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Abstract: This article discusses the morphological changes in the structures of the lungs when adapting to some 
extreme factors and environmental conditions. 

One of the most pressing problems of biology is the elucidation of the mechanisms of adaptation of the human body and 
animals to changing environmental conditions [1-7]. 

 This problem can be viewed in two aspects: firstly, in terms of the emergence of adaptive rearrangements in the body 
when exposed to environmental factors as a manifestation of the body's plasticity in ontogenesis, secondly, in terms of 
the emergence of adaptation, as genetically and phenotypically fixed adaptation of living organisms to the conditions 
environment, which arose in the course of evolution [8-13]. 

 The key point here is the identification and comparison of subtle mechanisms of similar (to the same environmental 
factor) adaptation that arise in ontogenesis and formed in phylogenesis [14-21]. 
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INTRODUCTION 

This paper presents the results of a study at the 
cellular level of similar adaptations of the respiratory 
part of the lungs of terrestrial vertebrates in ontogeny 
and phylogenesis. For this purpose, an electron 
microscopic study of the respiratory part of the rats' 
lungs was carried out during various experiments, in 
particular under the influence of extreme natural (high 
and low temperatures, hypoxia, physical activity) and 
anthropogenic (tobacco smoke) factors. At the same 
time, to clarify the ultrastructural basis of the 
evolutionary adaptation of the lungs, data from electron 
microscopic studies from representatives of some 
species of terrestrial vertebrates (amphibians, reptiles, 
mammals) from steppe and mountain biotopes are 
examined with the aim of a central organ of external 
gas exchange to various biotopes during evolution as 
in animals of different species, and the same species. 

Such studies are very important both for theoretical 
biology (evolutionary theory, ecological, comparative 
morphology and physiology), and for medicine [22-25]. 
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DISCUSSION  

Ultrastructural analysis of the respiratory section of 
the lungs when exposed to tobacco smoke, cooling, 
high temperature, hypoxia, physical activity revealed a 
number of submicroscopic adaptive reactions in the 
form of pronounced functional stress of all lung 
structures. A characteristic feature of these adaptive 
reactions was their non-specificity. Adaptive Remedies 
In caudate amphibians (common triton) inhabiting the 
steppe, adaptive reactions manifested themselves in 
enhanced secretion of surfactant, hyperplasia of 
mucous cells, “mixed” cells with ultrastructural signs of 
pneumocytes of type II and mucous membranes, 
apparently preventing fluid loss from the respiratory 
surface of the lungs. On the apical surface of the 
“mixed” type cells, many microvilli were found. The 
thickness of the aerohematic membrane system was 
significant. Increased secretion of mucous cells and 
cells of the "mixed" type was also confirmed by 
scanning microscopy data. 

In caudal amphibians (frog-crested) living in a 
mountain biotope, the number of glandular mucous 
cells decreased, secretion of surfactant decreased, the 
aerohematic membrane system thinned, and the area 
of the respiratory surface increased. Scanning 
microscopy data showed an increase in the respiratory 
surface area, which was documented by pronounced 
tortuosity (“twisted”) capillaries. 
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In tailless amphibians (danatinskaya toads) of one 
species living in different biotopes, an adaptive 
response was also detected, but it was different. 

Thus, in the steppe population, adaptation was 
manifested in the form of enhanced synthesis of 
surfactant and mucus, carried out by hyperplastic and 
hypertrophied type II pneumocytes, mucous cells and 
“mixed” cells. In addition, the folding of blood capillaries 
is noted, which helps to reduce the loss of endogenous 
fluid from the respiratory surface. According to 
scanning electron microscopy data, numerous and 
elongated microvilli on the apical surface of type I and 
II pneumocytes contributed to the retention of the felt-
like surfactant structures. 

In the mountain population of tailless amphibians of 
the danatin toad, there was a scanty content of 
osmiophil lamellar bodies in the cytoplasm of type II 
pneumocytes. The aerohematic membrane system was 
thinned. Scanning electron microscopy revealed the 
absence of significant surfactant masses, a sharp 
decrease in the number of microvilli, an increase in the 
respiratory surface of the lungs. 

In reptiles (lizards and snakes), of different or the 
same species, inhabitants of the steppe, production of 
the surfactant phospholipid complex sharply increased. 
In snakes (viper, steppe and steppe populations of the 
paplas shchitomordnik), the proportion of “mixed” type 
cells with ultrastructural signs of type II pneumocytes 
and mucous membranes increased. The mucoid 
component enhanced the surfactant phospholipid 
complex, which prevented the excessive loss of 
moisture through the respiratory surface of the lungs. 
The increased folding of the interstitium capillary 
network attracted attention. The basal membrane of the 
aerohematic membrane system remained fairly wide. 
When scanning electron microscopic examination, a 
significant secretion of mucus and surfactant was 
confirmed, as well as a decrease in the length of the 
aerohematic membrane system due to folding of the 
capillary network. 

In reptiles living in the mountain biotope, there was 
a decrease in the content of surfactant. A thinning of 
the aerohematic membrane system, the convergence 
and fusion of the basement membranes of the 
epithelium and endothelium, a significant increase in 
the length of the respiratory surface due to bulging of 
the loops of the capillary network in the form of “leaves” 
were noted. 

The respiratory part of the lungs of reptiles living in 
both steppe and mountain biotopes was characterized 
by a pronounced formation of vesicles in the epithelium 
and endothelium of the air-hematomatic membrane 
system, which reflected a high level of gas exchange 
and moisture extravasation in both vector directions. 

The ultrastructural data obtained by us showed that 
despite the primitive nature of the morphofunctional 
differentiation in amphibians and reptiles, we can still 
speak of the adaptive reactions that they develop in the 
respiratory part of the lungs, both under the influence of 
the direct (and the main) temperature factor and under 
the influence of hypoxia, having a very relative value. 

In rodents of both steppe and mountain species, 
ultrastructural adaptive changes have been noted in 
the respiratory region of the lungs. 

In the inhabitants of the steppes (common vole) 
they were manifested in hypertrophy of the surfactant 
alveolar complex, the “folding” of the capillary network, 
which reduced the degree of evaporation of moisture 
from the respiratory surface of the lungs. 

In rodents of mountain biotopes (Tien Shan vole), 
the characteristic submicroscopic feature of the 
respiratory part of the lungs was the thinning of the 
aerohematic membrane system. The respiratory 
surface was also enlarged to more effectively perform 
the function of gas exchange and fluid transfusion. 
surfactant alveolar complex was not changed. 

CONCLUSION  

Thus, our morphofunctional studies revealed 
significant inter - and intraspecific adaptation changes 
in the lungs of terrestrial vertebrates to various 
habitats. 

The adaptive responses of the respiratory part of 
the lungs in inhabitants of steppe and mountain 
biotopes were expressed in changes in the 
ultrastructural organization of capillaries (increase or 
decrease in working areas), as well as the functional 
mode of synthesis of surfactant (in rodents) and 
surfactant and mucus (in amphibians and reptiles). For 
the inhabitants of mountain biotopes, an important 
adaptation feature was the thinning of the aerohematic 
membrane system, which facilitated the diffusion of 
gases. 

Consequently, in animals living in various biotopes, 
adaptive mechanisms were carried out due to the 
functional stress of various structures, as noted by us 
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under the influence of extreme factors, and due to 
more economical organization of pulmonary capillaries 
and optimization of the functional mode of surfactant 
synthesis. 
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