Quality Control of HDL: Nutrition and Not Numbers May Determine HDL Functionality
PDF

Keywords

HDL functionality
HDL quality
nutrition
cardiovascular disease
reverse cholesterol transport (RCT)
ATP-binding cassette transporters

How to Cite

Nathalie Nicod, Francesco Visioli, & Ana Ramírez de Molina Madrid. (2011). Quality Control of HDL: Nutrition and Not Numbers May Determine HDL Functionality . Journal of Pharmacy and Nutrition Sciences, 1(2), 130–133. https://doi.org/10.6000/1927-5951.2011.01.02.07

Abstract

The strong inverse relationship between high density lipoproteins-cholesterol (HDL-C) levels and cardiovascular disease (CVD) has aroused a strong interest in the research of lifestyle and pharmacological agents capable of elevating plasma HDL levels. HDL is essential in reverse cholesterol transport (RCT), thus its anti-atherogenic function. However, torcetrapib, a compound that increases plasma HDL-C levels, was unexpectedly associated with an increased cardiovascular mortality. The findings led to consider that HDL functionality and quality might be more relevant to CVD than the total circulating HDL quantity itself. Adherence to the Mediterranean diet is known to be associated with increased HDL-C and decreased risk of CVD. However, the mechanism by which this happens has been yet poorly investigated and the effect of nutrition on HDL functionality and quality needs further attention.

https://doi.org/10.6000/1927-5951.2011.01.02.07
PDF

References

Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJ, Komajda M et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357: 2109-22.

http://dx.doi.org/10.1056/NEJMoa0706628

Khera AV, Cuchel M, de la Llera-Moya M, Rodrigues A, Burke MF, Jafri K et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364: 127-35.

http://dx.doi.org/10.1056/NEJMoa1001689

Brown RJ, Lagor WR, Sankaranaravanan S, Yasuda T, Quertermous T, Rothblat GH et al. Impact of combined deficiency of hepatic lipase and endothelial lipase on the metabolism of both high-density lipoproteins and apolipoprotein B-containing lipoproteins. Circ Res 2010; 107: 357-64.

http://dx.doi.org/10.1161/CIRCRESAHA.110.219188

Castro GR, Fielding CJ. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein. Biochemistry 1988; 27: 25-9.

http://dx.doi.org/10.1021/bi00401a005

Asztalos BF, Le Maulf F, Dallal GE, Stein E, Jones PH, Horvath KV et al. Comparison of the effects of high doses of rosuvastatin versus atorvastatin on the subpopulations of high-density lipoproteins. Am J Cardiol 2007; 99: 681-5.

http://dx.doi.org/10.1016/j.amjcard.2006.09.117

Morgan JM, Capuzzi DM, Baksh RI, Intenzo C, Carey CM, Reese D et al. Effects of extended-release niacin on lipoprotein subclass distribution. Am J Cardiol 2003; 91: 1432-6.

http://dx.doi.org/10.1016/S0002-9149(03)00394-1

Asztalos BF, Collins D, Horvath KV, Bloomfield HE, Robins SJ, Schaefer EJ. Relation of gemfibrozil treatment and high-density lipoprotein subpopulation profile with cardiovascular events in the Veterans Affairs High-Density Lipoprotein Intervention Trial. Metabolism 2008; 57: 77-83.

http://dx.doi.org/10.1016/j.metabol.2007.08.009

Kolovou GD, Mikhailidis DP, Anagnostopoulou KK, Daskalopoulou SS, Cokkinos DV. Tangier disease four decades of research: a reflection of the importance of HDL. Curr Med Chem 2006; 13: 771-82.

http://dx.doi.org/10.2174/092986706776055580

Joyce CW, Amar MJ, Lambert G, Vaisman BL, Paigen B, Najib-Fruchart J, et al. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice. Proc Natl Acad Sci U S A 2002; 99: 407-12.

http://dx.doi.org/10.1073/pnas.012587699

Lyssenko NN, Hata M, Dhanasekaran P, Nickel M, Nguyen D, Chetty PS et al. Influence of C-terminal alpha-helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality. Biochim Biophys Acta 2011; in press.

Shao B, Tang C, Heinecke JW, Oram JF. Oxidation of apolipoprotein A-I by myeloperoxidase impairs the initial interactions with ABCA1 required for signaling and cholesterol export. J Lipid Res 2010; 51: 1849-58.

http://dx.doi.org/10.1194/jlr.M004085

Rigotti A, Trigatti BL, Penman M, Rayburn H, Herz J, Krieger M. A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A 1997; 94: 12610-5.

http://dx.doi.org/10.1073/pnas.94.23.12610

Mardones P, Quinones V, Amigo L, Moreno M, Miquel JF, Schwarz M et al. Hepatic cholesterol and bile acid metabolism and intestinal cholesterol absorption in scavenger receptor class B type I-deficient mice. J Lipid Res 2001; 42: 170-80.

Wang N, Arai T, Ji Y, Rinninger F, Tall AR. Liver-specific overexpression of scavenger receptor BI decreases levels of very low density lipoprotein ApoB, low density lipoprotein ApoB, and high density lipoprotein in transgenic mice. J Biol Chem 1998; 273: 32920-6.

http://dx.doi.org/10.1074/jbc.273.49.32920

Kozarsky KF, Donahee MH, Rigotti A, Iqbal SN, Edelman ER, Krieger M. Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 1997; 387: 414-7.

http://dx.doi.org/10.1038/387414a0

Zhang Y, Da Silva JR, Reilly M, Billheimer JT, Rothblat GH, Rader DJ. Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo. J Clin Invest 2005; 115: 2870-4.

http://dx.doi.org/10.1172/JCI25327

Arai T, Wang N, Bezouevski M, Welch C, Tall AR. Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. J Biol Chem 1999; 274: 2366-71.

http://dx.doi.org/10.1074/jbc.274.4.2366

Wang Y, Oram JF. Unsaturated fatty acids inhibit cholesterol efflux from macrophages by increasing degradation of ATP-binding cassette transporter A1. J Biol Chem 2002; 277: 5692-7.

http://dx.doi.org/10.1074/jbc.M109977200

Murthy S, Born E, Mathur SN, Field FJ. Liver-X-receptor-mediated increase in ATP-binding cassette transporter A1 expression is attenuated by fatty acids in CaCo-2 cells: effect on cholesterol efflux to high-density lipoprotein. Biochem J 2004; 377: 545-52.

Berrougui H, Cloutier M, Isabelle M, Khalil A. Phenolic-extract from argan oil (Argania spinosa L.) inhibits human low-density lipoprotein (LDL) oxidation and enhances cholesterol efflux from human THP-1 macrophages. Atherosclerosis 2006; 184: 389-96.

http://dx.doi.org/10.1016/j.atherosclerosis.2005.05.018

Covas MI, Nyyssonen K, Poulsen HE, Kaikkonen J, Zunft HJ, Kiesewetter H et al. The effect of polyphenols in olive oil on heart disease risk factors: a randomized trial. Ann Intern Med 2006; 145: 333-41.

Holub BJ. Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins Leukot Essent Fatty Acids 2009; 81:199-204.

http://dx.doi.org/10.1016/j.plefa.2009.05.016

Wei MY, Jacobson TA. Effects of Eicosapentaenoic Acid Versus Docosahexaenoic Acid on Serum Lipids: A Systematic Review and Meta-Analysis. Curr Atheroscler Rep 2011; 13: 474-83.

http://dx.doi.org/10.1007/s11883-011-0210-3

Berrougui H, Grenier G, Loued S, Drouin G, Khalil A. A new insight into resveratrol as an atheroprotective compound: inhibition of lipid peroxidation and enhancement of cholesterol efflux. Atherosclerosis 2009; 207: 420-7.

http://dx.doi.org/10.1016/j.atherosclerosis.2009.05.017

Field FJ, Born E, Mathur SN. LXR/RXR ligand activation enhances basolateral efflux of beta-sitosterol in CaCo-2 cells. J Lipid Res 2004; 45: 905-13.

http://dx.doi.org/10.1194/jlr.M300473-JLR200

Oram JF, Vaughan AM, Stocker R. ATP-binding cassette transporter A1 mediates cellular secretion of alpha-tocopherol. J Biol Chem 2001; 276: 39898-902.

http://dx.doi.org/10.1074/jbc.M106984200

During A, Harrison EH. Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. J Lipid Res 2007; 48: 2283-94.

http://dx.doi.org/10.1194/jlr.M700263-JLR200

Bergt C, Pennathur S, Fu X, Byun J, O'Brien K, McDonald TO et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1-dependent cholesterol transport. Proc Natl Acad Sci U S A 2004; 101: 13032-7.

http://dx.doi.org/10.1073/pnas.0405292101

Bleys J, Miller ER, 3rd, Pastor-Barriuso R, Appel LJ, Guallar E. Vitamin-mineral supplementation and the progression of atherosclerosis: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2006; 84: 880-7; quiz 954-5.

Nunez-Cordoba JM, Martinez-Gonzalez MA. Antioxidant vitamins and cardiovascular disease. Curr Top Med Chem 2011; 11: 1861-9.

http://dx.doi.org/10.2174/156802611796235143

Blum S, Vardi M, Brown JB, Russell A, Milman U, Shapira C et al. Vitamin E reduces cardiovascular disease in individuals with diabetes mellitus and the haptoglobin 2-2 genotype. Pharmacogenomics 2010; 11: 675-84.

http://dx.doi.org/10.2217/pgs.10.17

Blum S, Vardi M, Levy NS, Miller-Lotan R, Levy AP. The effect of vitamin E supplementation on cardiovascular risk in diabetic individuals with different haptoglobin phenotypes. Atherosclerosis 2010; 211: 25-7.

http://dx.doi.org/10.1016/j.atherosclerosis.2010.02.018

Farbstein D, Blum S, Pollak M, Asaf R, Viener HL, Lache O et al. Vitamin E therapy results in a reduction in HDL function in individuals with diabetes and the haptoglobin 2-1 genotype. Atherosclerosis 2011; 219: 240-4.

http://dx.doi.org/10.1016/j.atherosclerosis.2011.06.005

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2011 Nathalie Nicod, Francesco Visioli , Ana Ramírez de Molina Madrid