Gum Arabic and Eugenol in a Silica-Induced Inflammatory Angiogenesis Model in Wistar Rat
PDF

Keywords

Eugenol
Granuloma
Gum arabic
Inflammation
Angiogenesis inhibitors

How to Cite

Dutra, B. de A. L., Carneiro, C. L. B., Melo, N. de O. R., Oliveira, G. B. de, Jamacaru, F. V. F., Ribeiro, J. C., & Dornelas, C. A. (2022). Gum Arabic and Eugenol in a Silica-Induced Inflammatory Angiogenesis Model in Wistar Rat. Journal of Pharmacy and Nutrition Sciences, 12, 11–19. https://doi.org/10.29169/1927-5951.2022.12.02

Abstract

This work aims to evaluate the effects of gum arabic and eugenol on inflammatory angiogenesis in a subcutaneous silica inoculum model. Ninety-six Wistar rats were distributed over 16 groups. The substances administered by gavage included distilled water, gum arabic (500 mg/100g weight), and eugenol (10mg/100g weight). Control groups received 0.2 mL of sterile distilled water subcutaneously. The experimental groups were subjected to an inoculum of 0.2 mL of silica solution (50 mg/mL) subcutaneously. For seven or 14 days, the groups received distilled water or gum arabic or eugenol or gum arabic plus eugenol. There was no difference between the histological analysis of slides stained with hematoxylin-eosin. There was a reduction in vascular density in animals that received only gum arabic for 7 (0.09 µm² ± 0.02) or 14 (0.08 µm² ± 0.03) days and only eugenol for seven days (0.08 µm² ± 0.03), but this was not statistically significant. The microvascular density significantly increased in the group treated with eugenol for 14 days (0.14 µm² ± 0.02). Eugenol reduced inflammatory angiogenesis when administered for seven days and stimulated it when administered for 14 days. Gum arabic had a potential inhibitory effect on this model. The study of inflammatory angiogenesis, induced by a silica inoculum in the subcutaneous tissue of rats, is a new and reproducible model for evaluating angiogenesis and inflammation.

https://doi.org/10.29169/1927-5951.2022.12.02
PDF

References

Johnson LV, et al. Activation and inflammatory processes in Drusen formation and age related macular degeneration. Exp Eye Res 2001; 73(6): 887-96. https://doi.org/10.1006/exer.2001.1094

Sajib S, et al. Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions. Angiogenesis 2018; 21(1): 1-14. https://doi.org/10.1007/s10456-017-9583-4

Aguilar-Cazares D, et al. Contribution of angiogenesis to inflammation and cancer. Frontiers in Oncology 2019; 9: 1399. https://doi.org/10.3389/fonc.2019.01399

Varela ML, et al. Acute inflammation and metabolism. Inflammation 2018; 41(4): 1115-1127. https://doi.org/10.1007/s10753-018-0739-1

Shah K, Pritt B, Alexander M. Histopathologic review of granulomatous inflammation. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases 2017; 7: 1-12. https://doi.org/10.1016/j.jctube.2017.02.001

Von Stebut E, et al. Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1α/β released from neutrophils recruited by mast cell–derived TNFα. Blood, The Journal of the American Society of Hematology 2003; 101(1): 210-215. https://doi.org/10.1182/blood-2002-03-0921

Ferreira ÂS, et al. Fibrose maciça progressiva em trabalhadores expostos à sílica: achados na tomografia computadorizada de alta resolução. Jornal Brasileiro de Pneumologia [online] 2006; 32(6): [Acessado 28 Fevereiro 2022], pp. 523-528. https://doi.org/10.1590/S1806-37132006000600009

Castranova V. Signaling pathways controlling the production of inflammatory mediators in response to crystalline silica exposure: Role of reactive oxygen/nitrogen species. Free Radical Biology and Medicine 2004; 37(7): 916-925. https://doi.org/10.1016/j.freeradbiomed.2004.05.032

Kaya TI, et al. Cutaneous silica granuloma in a child. Pediatric Dermatology 2003; 20(1): 40-43. https://doi.org/10.1046/j.1525-1470.2003.03009.x

Mowry RG, Sams WM, Caulfield JB. Cutaneous sílica granuloma. Arch Dermatol 1991; 127: 692-694. https://doi.org/10.1001/archderm.1991.01680040100011

Kaddam LA, Kaddam AS. Effect of Gum Arabic (Acacia senegal) on C-reactive protein level among sickle cell anemia patients. BMC Res Notes 2020; 13(1): 162. https://doi.org/10.1186/s13104-020-05016-2

Nasir O, et al. Downregulation of angiogenin transcript levels and inhibition of colonic carcinoma by Gum Arabic (Acacia senegal). Nutrition and Cancer 2010; 62(6): 802-810. https://doi.org/10.1080/01635581003605920

Avelino ALN, et al. Antioxidant and Antigenotoxic Actions of Gum Arabic on the Intestinal Mucosa, Liver and Bone Marrow of Swiss Mice Submitted to Colorectal Carcinogenesis. Nutrition and Cancer 2021; 4: 1-9.

Prakash PAGN, Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian Journal of Physiology and Pharmacology 2005; 49(2): 125.

Carreras A, et al. Punicalagin and catechins contain polyphenolic substructures that influence cell viability and can be monitored by radical chemosensors sensitive to eléctron transfer. Journal of Agricultural and Food Chemistry 2012; 60(7): 1659-1665. https://doi.org/10.1021/jf204059x

Zhang L, et al. Polymer-Brush-Grafted Mesoporous Silica Nanoparticles for Triggered Drug Delivery. Chemphyschem 2018; 19(16): 1956-1964. https://doi.org/10.1002/cphc.201800018

Nasif WA, Lotfy M, Mahmoud MR. Protective effect of gum acacia against the aspirin induced intestinal and pancreatic alterations. Eur Rev Med Pharmacol Sci 2011; 15(3): 285-92.

Bezerra DP, et al. The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment. Nutrients 2017; 9(12): 1367. https://doi.org/10.3390/nu9121367

Lockwood DNJ, et al. The histological diagnosis of leprosy type 1 reactions: identification of key variables and an analysis of the process of histological diagnosis. Journal of Clinical Pathology 2008; 61(5): 595-600. https://doi.org/10.1136/jcp.2007.053389

Michailowsky V, et al. Pivotal role of interleukin-12 and interferon-γ axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. The American Journal of Pathology 2001; 159(5): 1723-1733. https://doi.org/10.1016/S0002-9440(10)63019-2

Fechine-Jamacaru FV, Fechine Júnior JU, de Moraes Filho MO. Modelo de angiogênese inflamatória em córnea de coelho induzida pela cauterização alcalina pontual [Model of inflammatory angiogenesis in rabbit cornea induced by punctual alkaline cauterization]. Acta Cir Bras 2005; 20(1): 64-73. https://doi.org/10.1590/S0102-86502005000100010

Lockwood DNJ, et al. The histological diagnosis of leprosy type 1 reactions: identification of key variables and an analysis of the process of histological diagnosis. Journal of Clinical Pathology 2008; 61(5): 595-600. https://doi.org/10.1136/jcp.2007.053389

Michailowsky V, et al. Pivotal role of interleukin-12 and interferon-γ axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. The American Journal of Pathology 2001; 159(5): 1723-1733. https://doi.org/10.1016/S0002-9440(10)63019-2

Guarnieri G, Bizzotto R, Gottardo O, Velo E, Cassaro M, Vio S, Putzu MG, Rossi F, Zuliani P, Liviero F, Mason P, Maes-trelli P. Multiorgan accelerated silicosis misdiagnosed as sarcoidosis in two workers exposed to quartz conglomerate dust. Occup Environ Med 2019; 76(3): 178-180. https://doi.org/10.1136/oemed-2018-105462

Baur X, Sanyal S, Abraham JL. Mixed-dust pneumoconiosis: Review of diagnostic and classification problems with presentation of a work-related case. Sci Total Environ 2019; 652: 413-421. https://doi.org/10.1016/j.scitotenv.2018.10.083

Norlén F, Gustavsson P, Wiebert P, Rylander L, Albin M, Westgren M, Plato N, Selander J. Occupational exposure to inorganic particles during pregnancy and birth outcomes: a nationwide cohort study in Sweden. BMJ Open 2019. https://doi.org/10.1136/bmjopen-2018-023879

Newman LS, et al. Um estudo etiológico caso-controle da sarcoidose: Fatores de risco ocupacionais e ambientais. Sou J Respir Crit Care Med 2004; 170: 1324-1330. https://doi.org/10.1164/rccm.200402-249OC

Onesti MG, et al. A clinical case of cutaneous silica granuloma. Giornale italiano di dermatologia e venereologia: organo ufficiale. Societa italiana di dermatologia e sifilografia 2014; 149(3): 376-378.

Pimentel L, et al. Simultaneous presentation of silicone and silica granuloma. Dermatology 2002; 205(2): 162-165. https://doi.org/10.1159/000063897

Barna BP, Malur A, Thomassen MJ. Studies in a Murine Granuloma Model of Instilled Carbon Nanotubes: Relevance to Sarcoidosis. Int J Mol Sci 2021; 22(7): 3705. https://doi.org/10.3390/ijms22073705

Yeh JL, et al. Eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kappaB AND AP-1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages. Int J Immunopathol Pharmacol 2011; 24(2): 345-56. https://doi.org/10.1177/039463201102400208

Nasir O, et al. Downregulation of angiogenin transcript levels and inhibition of colonic carcinoma by Gum Arabic (Acacia senegal). Nutrition and Cancer 2010; 62(6): 802-810. https://doi.org/10.1080/01635581003605920

Barboza JN, da Silva Maia Bezerra Filho C, Silva RO, Medeiros JVR, de Sousa DP. An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol. Oxid Med Cell Longev 2018. https://doi.org/10.1155/2018/3957262

Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 2013; 12: 931-947. https://doi.org/10.1038/nrd4002

Fonsêca DV, et al., Ortho-eugenol exhibits anti-nociceptive and anti-inflammatory activities. Int Immunopharmacol 2016; 38: 402-408. https://doi.org/10.1016/j.intimp.2016.06.005

Nisar MF, et al. Pharmacological Properties and Health Benefits of Eugenol: A Comprehensive Review Oxid Med Cell Longev 2021. https://doi.org/10.1155/2021/2497354

Chaieb K, Hajlaoui H, Zmantar T, Kahla-Nakbi AB, Rouabhia M, Mahdouani K, Bakhrouf A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res 2007; 21(6): 501-6. https://doi.org/10.1002/ptr.2124

Ranjitkar S, Zhang D, Sun F, Salman S, He W, Venkitanarayanan K, Tulman ER, Tian X. Cytotoxic effects on cancerous and non-cancerous cells of trans-cinnamal-dehyde, carvacrol, and eugenol. Sci Rep 2021; 11; 11(1). https://doi.org/10.1038/s41598-021-95394-9

Alves TA, Pinheiro PF, Praça-Fontes MM, Andrade-Vieira LF, Lourenço MP, Lage MR, Alves TA, Cruz FA, Carneiro JWM, Ferreira A, Soares TCB. Bioactivity and molecular properties of Phenoxyacetic Acids Derived from Eugenol and Guaiacol compared to the herbicide 2,4-D. An Acad Bras Cienc 2021; 93(4). https://doi.org/10.1590/0001-3765202120191368

Fuentes C, Ruiz-Rico M, Fuentes A, Barat JM, Ruiz MJ. Comparative cytotoxic study of silica materials functionalised with essential oil components in HepG2 cells. Food Chem Toxicol 2021. https://doi.org/10.1016/j.fct.2020.111858

Ma L, Liu J, Lin Q, Gu Y, Yu W. Eugenol protects cells against oxidative stress via Nrf2. Exp Ther Med 2021; 21(2): 107. https://doi.org/10.3892/etm.2020.9539

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Barbara de Araujo Lima Dutra, Carolina Lyra Barreira Carneiro, Nayanna de Oliveira Ramos Melo, Gilson Brito de Oliveira, Francisco Vagnaldo Fechine Jamacaru, Joao Crispim Ribeiro, Conceição Aparecida Dornelas