Abstract
Zizyphus spina-christi (Rhamnaceae) is a popular medicinal plant that grows wildly in Asia and Tropical Africa. The plant is widely used in ethnomedical practice for the treatment of fever. As a step towards the isolation of biologically active constituents of this plant, we carried out a bioassay guided extraction of the root bark using solvents of varying polarity including, hexane, chloroform, ethylacetate and methanol. An antiplasmodial compound, designated as ZS-2A, was isolated from the chloroform extract and the chemical structure of the compound was characterized using UVvisible, IR, 13C and 1H NMR and thermo-analytical techniques. Our analysis established ZS – 2A as a betulinic acid.
References
Al-Said M.S., 1993. Traditional medicinal plants of Saudi Arabia. American Journal of Clinical Medicine, 21, 291 - 298.
Burkill H.M., 1997. The Useful plants of West Tropical Africa. Royal Botanic Gardens, Kew. UK. Vol.4, pp. 493 - 496.
Adzu B., Haruna A.K., 2007. Studies on the use of Zizyphus spina-christi against pain in rats and mice. African Journal of Biotechnology, 6, 1317 – 1324.
Adzu B., Haruna A.K., Salawu O.A., Sule A., 2007a. Bioassay-guided evaluation of the antidiarrhoeal potentials of Zizyphus spina-christi rootbark in rats. International Journal of Biological and Chemical Sciences, 1, 15 – 20.
Adzu B., Haruna A.K., Salawu O.A., Katsayal U.A., Njan A., 2007b. In vivo antiplasmodial activity of ZS-2A: A fraction from chloroform extract of Zizyphus spina-christi rootbark against Plasmodium berghei berghei in mice. International Journal of Biological and Chemical Sciences, 1: 281 – 286.
Adzu B., Haruna A.K., Ilyas M., Gamaniel K.S., 2008. CNS activity of ZS-1A: Phytoceutical from Zizyphus spina-christi rootbark. International Journal of Biological and Chemical Sciences, 2, 456 – 461.
Yu L., Zhao M., Yang B., Zhao Q., Jiang Y., 2007. Phenolics from hull of Garcia mangostana fruit and their antioxidant activities. Food Chemistry, 104, 176 – 181.
O’neill M.J., 1964. The analysis of a temperature-controlled scanning calorimeter. Analytical Chemistry, 36, 1238 – 1245.
Finar I.L., 1975. Organic Chemistry Vol. 2: Stereochemistry and the chemistry of natural product. 5th ed. Longmans Singapore Publishers Pte Ltd. pp. 17 – 18.
Furniss B.S., Hannaford A.J., Smith P.W.G., Tatchell A.R., 1989. Vogel’s Textbook of Practical Organic Chemistry. Longman Singapore Publishers Pte Ltd, pp. 236, 259, 1413.
Shaari K., Waterman P.G., 1996. D; A-Friedo – oleanane triterpenes from the stem of Homalium longifolium. Phytochemistry, 41, 867 – 869.
Lima E.M.C., Medeiros J.M.R., Davin L.B., 2003. Pentacyclic triterpenes from Euphorbia slygiana. Phytochemistry, 63, 421 – 425.
Jeller A.H., Silva D.H.S., Liao L.M., Bolzani V., da S, Furlan M., 2004. Antioxidant phenolic and quinonemethide triterpenes from Cheiloclinium cognatum. Phytochemistry, 65, 1977 – 1982.
Na M., Cui L., Min B.S., Bae K., Yoo J.K., Kim B.Y., Oh W.K., Ahn J.S., 2006. Protein tyrosine phosphatase 1B inhibitory activity of triterpenes isolated from Astilbe korea. Bioorganic and Medicinal Chemistry Letters, 16, 3273 – 3276.
Cáceres – Castillo D., Mena – Rejón G.J., Cedillo – Rivera R., Quijano L., 2008. 21 – Hydroxy – Oleanane – type triterpenes from Hippocratea excelsa. Phytochemistry, 69, 1057 – 1064.
Yogeeswari P., Sriram D., 2005. Betulinic acid and its derivatives: A review on their biological properties. Curr. Medicinal Chemistry, 12, 657 – 666.
de Sa M.S., Costa J.F., Krettli A.U., Zalis M.G., Maia G.L., Sette I.M., Camara Cde A., Filho J.M., Giulietti-Harley A.M., Ribeiro Dos Santos R., Soares M.B., 2009. Antimalarial activity of betulinic acid and derivatives in vitro against Plasmodium falciparum and in vivo berghei-infected mice. Parasitological Research, 105, 275 – 279.
Jäger S., Trojan H., Kopp T., Laszczyk M.N., Scheffler A., 2009. Pentacyclic triterpene distribution in various plants-rich sources for a new group of multi- potent plant extracts. Molecules, 4, 2016 – 2031.
Suksamrarn A, Tanachatchairatana T, Kanokmedhakw S (2003). Antiplasmodial triterpenes from twigs of Gardenia saxatilis. Journal of Ethnopharmacology, 88, 275 – 277.
Domínguez-Carmona D.B., Escalante F., García-Sosa K., Ruiz-Pinell G., Gutierrez-Yabu D., Chan-Bacab M.J., Gimenez-Turba A., Penňa-Rodríguez L.M., 2010. Antiprotozoal activity of betulinic acid derivatives. Phytomedicine, 17, 379 – 382.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.