Abstract
The efficiency of microelectronic devices depends greatly on the charge transport performance of organic semiconductors. The purpose of this work is to analyze the effect of donor-acceptor (D-A) cocrystals on the charge transport characteristics of organic semiconductors using the Marcus theory of electron transfer combined with kinetic Monte Carlo simulations. For two different cocrystals, sesquikis (benzene-1,2,4,5-tetracarbonitrile) 2-(1,3-benzothiazol-2-yl)-3-(pyren-1-yl)prop-2-eneni-trile(PCNTC-O) and ben-zene-1,2,4,5-tetracarbonitrile 2-(1,3-benzothiazol-2-yl)-3-(pyren-1-yl)pr-op-2-enenitrile(PCNTC-R) cocrystals, were investigated using 2-(benzo[d]-thiazol-2-yl)-3-(pyren-1-yl)acrylonitrile (Py-BZTCN) as the donor and 1,2,4,5-tetracyanobenzene (TCNB) as the acceptor mixed at 1:2 and 1:1 ratios, respectively. According to our calculations, PCNTC-O and PCNTC-R both exhibit bipolar charge transport behaviour with mobilities electron/hole attaining 0.0104/0.1252 and 0.0241/0.0598 cm2/Vs, respectively.
References
Luo Y, Li S, Zhao Y, et al. An Ultraviolet Thermally Activated Delayed Fluorescence OLED with Total External Quantum Efficiency over 9%[J]. Advanced Materials 2020; 32(32): 2001248. https://doi.org/10.1002/adma.202001248
Zoppi L, Martin-Samos L, Baldridge K. Effect of Molecular Packing on Corannulene Based Materials Electroluminescence[J]. Journal of the American Chemical Society 2011; 133: 14002-14009. https://doi.org/10.1021/ja2040688
Izawa S, Morimoto M, Naka S, et al. Spatial distribution of triplet excitons formed from charge transfer states at donor/acceptor interface[J]. Journal of Materials Chemistry A. 2022. https://doi.org/10.1039/D2TA02068H
Havare K. Effect of the interface improved by self-assembled aromatic organic semiconductor molecules on performance of OLED[J]. ECS Journal of Solid State Science and Technology 2020; 9(4): 041007. https://doi.org/10.1149/2162-8777/ab8789
Fu B, Hou X, Wang C, et al. A bowl-shaped sumanene derivative with dense convex-concave columnar packing for high-performance organic field-effect transistors[J]. Chemical Communications 2017; 53: 11407-11409. https://doi.org/10.1039/C7CC05889F
Shi K, Lei T, Pei J, A bowl-shaped molecule for organic field-effect transistors: crystal engineering and charge transport switching by oxygen doping[J]. Chemical Science 2014; 5: 1041-1045. https://doi.org/10.1039/C3SC52701H
Salunke K, Wong L, Feron K, et al. Phenothiazine and carbazole substituted pyrene based electroluminescent organic semiconductors for OLED devices[J]. Journal of Materials Chemistry C 2016; 4(5): 1009-1018. https://doi.org/10.1039/C5TC03690A
Chen R, Shi K, Wu F, et al. Corannulene derivatives with low LUMO levels and dense convex-concave packing for n-channel organic field-effect transistors[J]. Chemical Communications 2015; 51: 13768-13771. https://doi.org/10.1039/C5CC03550C
Zhang J, Liu G, Zhou Y, et al. Solvent accommodation: functionalities can be tailored through co-crystallization based on 1: 1 coronene-F4TCNQ charge-transfer complex[J]. ACS Applied Materials & Interfaces 2017; 9(2): 1183-1188. https://doi.org/10.1021/acsami.6b15027
Vegiraju S, Luo X, Li L, et al. Solution Processable Pseudo n-Thienoacenes via Intramolecular S···S Lock for High Performance Organic Field Effect Transistors[J]. Chemistry of Materials 2020; 32(4): 1422-1429. https://doi.org/10.1021/acs.chemmater.9b03967
Brabec J, Sariciftci S, Hummelen C. Plastic Solar Cells[J]. Advanced Functional Materials 2001; 11(1): 15-26. https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
Li N, Baran D, Forberich K, et al. Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials[J]. Energy & Environmental Science 2013; 6(12): 3407-3413. https://doi.org/10.1039/c3ee42307g
Wu G, Zhang Y, Kaneko R, et al. Anthradithiophene based hole-transport material for efficient and stable perovskite solar cells[J]. Journal of Energy Chemistry 2020; 48: 293-298. https://doi.org/10.1016/j.jechem.2020.02.021
Yao L, Rahmanudin A, Guijarro N, et al. Organic semiconductor based devices for solar water splitting[J]. Advanced Energy Materials 2018; 8(32): 1802585. https://doi.org/10.1002/aenm.201802585
Liu S, Li C, Xu X, et al. Efficiency enhancement of organic photovoltaics by introducing high-mobility curved small-molecule semiconductors as additives[J]. Journal of Materials Chemistry A 2019; 7(20): 12740-12750. https://doi.org/10.1039/C9TA02636C
Liu J, Zhang H, Dong H, et al. High mobility emissive organic semiconductor[J]. Nature Communications 2015; 6(1): 10032. https://doi.org/10.1038/ncomms10032
Yamaguchi Y, Kojiguchi Y, Kawata S, et al. Solution-Processable Organic Semiconductors Featuring S-Shaped Dinaphthothienothiophene (S-DNTT): Effects of Alkyl Chain Length on Self-Organization and Carrier Transport Properties[J]. Chemistry of Materials 2020; 32(12): 5350-5360. https://doi.org/10.1021/acs.chemmater.0c01740
Lv A, Puniredd S R, Zhang J, et al. High mobility, air stable, organic single crystal transistors of an n-type diperylene bisimide[J]. Advanced Materials 2012; 24(19): 2626-2630. https://doi.org/10.1002/adma.201104987
Li H, Tee BCK, Cha JJ, et al. High-mobility field-effect transistors from large-area Solution-grown aligned C60 single crystals[J]. Journal of the American Chemical Society 2012; 134(5): 2760-2765. https://doi.org/10.1021/ja210430b
Tsiko U, Volyniuk D, Andruleviciene V, et al, Triphenylamino or 9-phenyl carbazolyl-substituted pyrimidine-5-carbonitriles as bipolar emitters and hosts with triplet harvesting abilities[J]. Materials Today Chemistry 2022; 25: 100955. https://doi.org/10.1016/j.mtchem.2022.100955
Qin Y, Cheng C, Geng H, et al. Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory[J]. Physical Chemistry Chemical Physics 2016; 18(20): 14094-14103. https://doi.org/10.1039/C6CP01509C
Jin J, Long G, Gao Y, et al. Supramolecular Design of Donor-Acceptor Complexes via Heteroatom Replacement toward Structure and Electrical Transporting Property Tailoring[J]. ACS Appl. Mater Interfaces 2019; 11: 1109-1116. https://doi.org/10.1021/acsami.8b16561
Mandal A, Swain P, Nath B, et al. Unipolar to ambipolar semiconductivity switching in charge transfer cocrystals of 2,7-di-tert-butylpyrene[J]. Cryst Eng Comm 2019; 21: 981-989. https://doi.org/10.1039/C8CE01806E
Iijima K, Sanada R, Yoo D, et al. Carrier Charge Polarity in Mixed-Stack Charge-Transfer Crystals Containing Dithienobenzodithiophene[J]. ACS Appl Mater Interfaces 2018; 10: 10262-10269. https://doi.org/10.1021/acsami.8b00416
Sato R, Dogishi M, Higashino T, et al. Charge-Transfer Complexes of Benzothienoben-zothio-phene with Tetracyanoquinodimethane and the n-Channel Organic Field-Effect Transistors[J]. The Journal of Physical Chemistry C 2017; 121: 6561-6568. https://doi.org/10.1021/acs.jpcc.7b00902
Hu P, Li H, Li Y, et al. Single-crystal growth, structures, charge transfer and transport properties of anthracene-F4TCNQ and tetracene-F4TCNQ charge-transfer compounds[J]. Cryst Eng Comm 2017; 19: 618-624. https://doi.org/10.1039/C6CE02116F
Zhang J, Gu P, Long G, et al. Switching charge-transfer characteristics from p-type to n-type through molecular “doping” (co-crystallization) [J]. Chemical Science 2016; 7: 3851-3856. https://doi.org/10.1039/C5SC04954G
Higashino T, Dogishi M, Kadoya T, et al. Air-stable n-channel organic field-effect transist-ors based on charge-transfer complexes including dimethoxybenzothienobenzothiophene and tetracyanoquinodimethane derivatives[J]. Journal of Materials Chemistry C 2016; 4: 5981-5987. https://doi.org/10.1039/C6TC01532H
Zhu W, Yi Y, Zhen Y, et al. Precisely Tailoring the Stoichiometric Stacking of Perylene-TCNQ Co-Crystals towards Different Nano and Microstructures with Varied Optoelectronic Performances[J]. Small 2015; 11: 2150-2156. https://doi.org/10.1002/smll.201402330
Tsutsumi J, Matsuoka S, Inoue S, et al. N-Type Field-Effect Transistor Based on Layered Crystalline Donor-Acceptor Semiconductors with Dialkylated Benzothienobenzo-thiophenes as Electron Donors[J]. Journal of Materials Chemistry C 2015; 3: 1976-1981. https://doi.org/10.1039/C4TC02481H
Su Y, Li Y, Liu J, et al. Donor-acceptor cocrystal based on hexakis(alkoxy)triphenylene and perylenediimide derivatives with an ambipolar transporting property[J]. Nanoscale 2015; 7: 1944-1955. https://doi.org/10.1039/C4NR05915H
Zhang X, De J, Liu H, et al. Cis-Trans Isomerism Inducing Cocrystal Polymorphism with Thermally Activated Delayed Fluorescence and Two-Photon Absorption[J]. Advance Optical Materials 2022; 2200286. https://doi.org/10.1002/adom.202200286
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.