Abstract
Our research has been conducted on the charge transport properties of the single-crystal DPTTA and the cocrystal DPTTA-F4TCNQ using the density functional theory coupled with incoherent charge-hopping model. Charge mobility is primarily considered from the combination of reorganization energy and charge transfer integral, which are important parameters in model of the charge-hopping model. The reorganization energy of DPTTA in both single-crystal and cocrystal forms exhibits similar values. Consistent with the properties of super-exchange coupling and direct coupling when under the same type of coupling mechanism, it decreases with increasing distance from the core molecule. We conclude this section by using kinetic Monte Carlo combined with Einstein's equation to derive the charge mobility, and find it to be consistent with the theoretical analysis. In our study, we propose corresponding theoretical guidelines for the rational realization of the ambipolarity of D-A complexes, hoping to contribute to the understanding and rational design of the basic mechanism of D-A complexes.
References
Bronstein H, Nielsen CB, Schroeder BC, McCulloch I. The role of chemical design in the performance of organic semiconductors. Nature Reviews Chemistry 2020; 4(2): 66-77. https://doi.org/10.1038/s41570-019-0152-9
Zhao W, Ding J, Zou Y, Di C-A, Zhu D. Chemical doping of organic semiconductors for thermoelectric applications. Chemical Society Reviews 2020; 49(20): 7210-7228. https://doi.org/10.1039/D0CS00204F
Wang X, Wang W, Yang C, Han D, Fan H, Zhang J. Thermal transport in organic semiconductors. Journal of Applied Physics 2021; 130(17): 170902. https://doi.org/10.1063/5.0062074
Li S, et al. An organic cocrystal based on phthalocyanine with ideal packing mode towards high-performance ambipolar property. Journal of Materials Chemistry C 2022; 10(25): 9596-9601. https://doi.org/10.1039/D2TC01341J
Anthony JE, Facchetti A, Heeney M, Marder SR, Zhan X. n‐Type organic semiconductors in organic electronics. Advanced Materials 2010; 22(34): 3876-3892. https://doi.org/10.1002/adma.200903628
Capelli R, Toffanin S, Generali G, Usta H, Facchetti A, Muccini M. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nature Materials 2010; 9(6): 496-503. https://doi.org/10.1038/nmat2751
Dinelli F, et al. High‐mobility ambipolar transport in organic light‐emitting transistors. Advanced Materials 2006; 18(11): 1416-1420. https://doi.org/10.1002/adma.200502164
Yan C, et al. Ambipolar-transport wide-bandgap perovskite interlayer for organic photovoltaics with over 18% efficiency. Matter 2022. https://doi.org/10.1016/j.matt.2022.04.028
Liu L, et al. Lamellar organic light-emitting crystals exhibiting spectral gain and 3.6% external quantum efficiency in transistors. ACS Materials Letters 2021; 3(4): 428-432. https://doi.org/10.1021/acsmaterialslett.1c00056
Takahashi T, Takenobu T, Takeya J, Iwasa Y, Ambipolar light‐emitting transistors of a tetracene single crystal. Advanced Functional Materials 2007; 17(10): 1623-1628. https://doi.org/10.1002/adfm.200700046
Wang Z, et al. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Advanced Science 2020; 7(3): 1901382. https://doi.org/10.1002/advs.201901382
De Boer R, et al. Ambipolar Cu-and Fe-phthalocyanine single-crystal field-effect transistors. Applied Physics Letters 2005; 86(26): 262109. https://doi.org/10.1063/1.1984093
Hu R, Wu E, Xie Y, Liu J. Multifunctional anti-ambipolar pn junction based on MoTe2/MoS2 heterostructure. Applied Physics Letters 2019; 115(7): 073104. https://doi.org/10.1063/1.5109221
On S, Kim Y-J, Lee H-K, Yoo H. Ambipolar and anti-ambipolar thin-film transistors from edge-on small-molecule heterostructures. Applied Surface Science 2021; 542: 148616. https://doi.org/10.1016/j.apsusc.2020.148616
Lei T, et al. Ambipolar Photoresponsivity in an Ultrasensitive Photodetector Based on a WSe2/InSe Heterostructure by a Photogating Effect. ACS Applied Materials & Interfaces 2021; 13(42): 50213-50219. https://doi.org/10.1021/acsami.1c12330
Guo S, et al. 2D molecular crystal templated organic p–n heterojunctions for high-performance ambipolar organic field-effect transistors. Journal of Materials Chemistry C 2021; 9(17): 5758-5764. https://doi.org/10.1039/D1TC00715G
Huang Y, Wang Z, Chen Z, Zhang Q. Organic Cocrystals: Beyond Electrical Conductivities and Field‐Effect Transistors (FETs). Angewandte Chemie International Edition 2019; 58(29): 9696-9711. https://doi.org/10.1002/anie.201900501
Zhu W, Zhang X, Hu W. Molecular cocrystal odyssey to unconventional electronics and photonics. Science Bulletin 2021; 66(5): 512-520. https://doi.org/10.1016/j.scib.2020.07.034
Sun L, Zhu W, Zhang X, Li L, Dong H, Hu W. Creating organic functional materials beyond chemical bond synthesis by organic cocrystal engineering. Journal of the American Chemical Society 2021; 143(46): 19243-19256. https://doi.org/10.1021/jacs.1c07678
Huang Y, et al. Green grinding-coassembly engineering toward intrinsically luminescent tetracene in cocrystals. ACS Nano 2020; 14(11): 15962-15972. https://doi.org/10.1021/acsnano.0c07416
Kulkarni AP, Zhu Y, Babel A, Wu P-T, Jenekhe SA, New Ambipolar Organic Semiconductors. 2. Effects of Electron Acceptor Strength on Intramolecular Charge Transfer Photophysics, Highly Efficient Electroluminescence, and Field-Effect Charge Transport of Phenoxazine-Based Donor− Acceptor Materials. Chemistry of Materials 2008; 20(13): 4212-4223. https://doi.org/10.1021/cm7022136
Hasegawa T, Mattenberger K, Takeya J, Batlogg B. Ambipolar field-effect carrier injections in organic Mott insulators. Physical Review B 2004; 69(24): 245115. https://doi.org/10.1103/PhysRevB.69.245115
Lee J, Han A-R, Yu H, Shin TJ, Yang C, Oh JH. Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. Journal of the American Chemical Society 2013; 135(25): 9540-9547. https://doi.org/10.1021/ja403949g
Li Y, Sonar P, Murphy L, Hong W. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy & Environmental Science 2013; 6(6): 1684-1710. https://doi.org/10.1039/c3ee00015j
Balambiga B, Dheepika R, Devibala P, Imran PM, Nagarajan S. Picene and PTCDI based solution processable ambipolar OFETs. Scientific Reports 2020; 10(1): 1-13. https://doi.org/10.1038/s41598-020-78356-5
Vermeulen D, et al. Charge transport properties of Perylene–TCNQ crystals: The Effect of stoichiometry. The Journal of Physical Chemistry C 2014; 118(42): 24688-24696. https://doi.org/10.1021/jp508520x
Wu H-D, Wang F-X, Xiao Y, Pan G-B. Preparation and ambipolar transistor characteristics of co-crystal microrods of dibenzotetrathiafulvalene and tetracyanoquinodimethane. Journal of Materials Chemistry C 2013; 1(12): 2286-2289. https://doi.org/10.1039/c3tc30112e
Wakahara T, et al. Fullerene/cobalt porphyrin hybrid nanosheets with ambipolar charge transporting characteristics. Journal of the American Chemical Society 2012; 134(17): 7204-7206. https://doi.org/10.1021/ja211951v
Zhu L, Yi Y, Li Y, Kim E-G, Coropceanu V, Brédas J-L. Prediction of remarkable ambipolar charge-transport characteristics in organic mixed-stack charge-transfer crystals. Journal of the American Chemical Society 2012; 134(4): 2340-2347. https://doi.org/10.1021/ja210284s
Zhu L, Yi Y, Fonari A, Corbin NS, Coropceanu V, Brédas J-L. Electronic properties of mixed-stack organic charge-transfer crystals. The Journal of Physical Chemistry C 2014; 118(26): 14150-14156. https://doi.org/10.1021/jp502411u
Hu P, Du K, Wei F, Jiang H, Kloc C. Crystal growth, HOMO–LUMO engineering, and charge transfer degree in perylene-F x TCNQ (x= 1, 2, 4) organic charge transfer binary compounds. Crystal Growth & Design 2016; 16(5): 3019-3027. https://doi.org/10.1021/acs.cgd.5b01675
Geng H, Zheng X, Shuai Z, Zhu L, Yi Y. Understanding the Charge Transport and Polarities in Organic Donor–Acceptor Mixed‐Stack Crystals: Molecular Insights from the Super‐Exchange Couplings. Advanced Materials 2015; 27(8): 1443-1449. https://doi.org/10.1002/adma.201404412
Zhang J, et al. Sulfur‐Bridged Annulene‐TCNQ Co‐Crystal: A Self‐Assembled ‘‘Molecular Level Heterojunction’’ with Air Stable Ambipolar Charge Transport Behavior. Advanced Materials 2012; 24(19): 2603-2607. https://doi.org/10.1002/adma.201200578
Menard E, Podzorov V, Hur SH, Gaur A, Gershenson ME, Rogers JA. High‐performance n‐and p‐type single‐crystal organic transistors with free‐space gate dielectrics. Advanced Materials 2004; 16(23‐24): 2097-2101. https://doi.org/10.1002/adma.200401017
Castagnetti N, Masino M, Rizzoli C, Girlando A, Rovira C. Mixed stack charge transfer crystals: Crossing the neutral-ionic borderline by chemical substitution. Physical Review Materials 2018; 2(2): 024602. https://doi.org/10.1103/PhysRevMaterials.2.024602
Marcus RA. Electron transfer reactions in chemistry. Theory and experiment in Protein electron transfer: Garland Science 2020; pp. 249-272. https://doi.org/10.1201/9781003076803-10
Gaussian RA. "1, mj frisch, gw trucks, hb schlegel, ge scuseria, ma robb, jr cheeseman, g. Scalmani, v. Barone, b. Mennucci, ga petersson et al., gaussian," Inc., Wallingford CT, 2009; 121: 150-166.
Niu Y, et al. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials. Molecular Physics 2018; 116(7-8): 1078-1090. https://doi.org/10.1080/00268976.2017.1402966
Jiang H, et al. Tuning of the degree of charge transfer and the electronic properties in organic binary compounds by crystal engineering: a perspective. Journal of Materials Chemistry C 2018; 6(8): 1884-1902. https://doi.org/10.1039/C7TC04982J
Qin Y, et al. Efficient ambipolar transport properties in alternate stacking donor–acceptor complexes: from experiment to theory. Physical Chemistry Chemical Physics 2016; 18(20): 14094-14103. https://doi.org/10.1039/C6CP01509C
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.