A 0.123% Stevia/Aspartame 91/9 Aqueous Solution Balances the Effects of the Two Substances, and may thus be a Safer and Tastier Sweetener to be Used
PDF

Keywords

 Ant, cognition, food additive, locomotion, memory.

How to Cite

Marie-Claire Cammaerts, Roger Cammaerts, & Axel Dero. (2015). A 0.123% Stevia/Aspartame 91/9 Aqueous Solution Balances the Effects of the Two Substances, and may thus be a Safer and Tastier Sweetener to be Used. Journal of Pharmacy and Nutrition Sciences, 5(4), 236–248. https://doi.org/10.6000/1927-5951.2015.05.04.4

Abstract

Sweeteners are presently largely consumed all over the world, essentially aspartame (North America, Europe) and stevia (South America, Asia). Aspartame has a pleasant taste but present some adverse effects; stevia has very few adverse effects but has not the sweetest taste. Using ants as biological models, we here examined if a 0.123% solution of stevia/aspartame 91/9 might have both a pleasant taste and nearly no adverse effects. We found that it did not change the ants’ food consumption while aspartame increased it and stevia slightly decreased it. It did not affect their locomotion, precision of reaction and response to pheromones as aspartame did. It did not increase their audacity as aspartame largely and stevia somewhat did. It did not affect the ants’ brood caring behavior and cognition as aspartame did, and it did not impact the conditioning ability and memory as aspartame drastically and stevia slightly did. Confronted to sugar water and a stevia/aspartame 91/9 solution, the ants equally drunk the two solutions, while having the choice between aspartame and sugar, they soon nearly exclusively chose the sugar, and while in presence of stevia and sugar, the ants progressively chose the sugar. Very probably aspartame enhanced the taste of stevia, and as the latter contains a true glycoside, a stevia/aspartame 91/9 solution did not affect the ants’ physiology and ethology as pure aspartame did. In front of sugar and a stevia/aspartame ca 96/4 solution, the ants chose the sugar. Thus, a 0.123% solution in which 9% aspartame (and no less) is mixed to 91% stevia (and no more) appears to constitute a safe and tasty sweetener which could be used instead of solutions containing only aspartame or stevia.

https://doi.org/10.6000/1927-5951.2015.05.04.4
PDF

References

Abegaz EG, Mayhew DA, Butchko HH, Stargel WW, Comer CP, Andress SE. Aspartame. In Lyn O’Brien Nabors, editor. Alternative Sweeteners, 4th ed. Boca Raton, Fl: CRC Press 2011; pp. 57-76. http://dx.doi.org/10.1201/b11242-7

https://en.wikipedia.org/wiki/Aspartame (last access: 24/09/2015)

Trocho C, Pardo R, Rafecas I, Virgili J, Remesar X, Fernandez-Lopez JA, Alemany M. Formaldehyde derived from dietary aspartame binds to tissue components in vivo. Life Sciences 1998; 63: 337-349. http://dx.doi.org/10.1016/S0024-3205(98)00282-3

Tandel KR. Sugar substitutes: health controversy over perceived benefits. J Pharmacol Pharmacother 2011; 2: 236-243. http://dx.doi.org/10.4103/0976-500X.85936

Carakostas M, Prakash I, Kinghorn AD, Wu CD, Soejarto DD. Steviol Glycosides. In: Lyn O’Brien Nabors editor. Alternative Sweeteners, 4th ed. Boca Raton, Fl: CRC Press 2011; pp. 159-180. http://dx.doi.org/10.1201/b11242-13

Cammaerts MC, Cammaerts R. Aspartame increases food demand and impacts behavior: a study using ants as models. Acta Biomedica Scientia 2016; 3: 9-23.

Kolb B, Whishaw IQ. Neuroscience & cognition: cerveau et comportement. New York, Basing Stoke: Worth Publishers 2002.

Wehner R, Gehring W. Biologie et Physiologie Animales. Paris, Bruxelles: De Boek Université, Thieme Verlag 1999.

Russell WMS, Burch RL. The Principles of Humane Experimental Technique. Johns Hopkins University 2014.

Wolf FW, Heberlein U. Invertebrate models of drug abuse. J Neurobiol 2003; 54: 161-178. http://dx.doi.org/10.1002/neu.10166

Søvik E, Barron AB. Invertebrate models in addiction research. Brain Behavior and Evolution 2013; 82: 153-165. http://dx.doi:org/10.1159/000355506

Andre RG, Wirtz RA, Das YT. Insect Models for Biomedical Research. In: Woodhead AD, editor. Non mammalian Animal Models for Biomedical Research, Boca Raton, FL: CRC Press, 1989; pp. 61-72.

Abramson CI, Wells H, Janko B. A social insect model for the study of ethanol induced behavior: the honey bee. In: Yoshida R editor. Trends in Alcohol Abuse and Alcoholism Research. Nova Sciences Publishers Inc 2007; pp. 197-218.

Keller RA. A phylogenetic analysis of ant morphology (Hymenoptera: Formicidae) with special reference to the Poneromorph subfamilies. Bull Am Museum Nat Hist 2011; 355: p. 99.

Billen J, Morgan ED. Pheromone communication in social insects - sources and secretions. In: Vander Meer RK, Breed MD, Espelie KE, Winston MLK editors. Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites. Boulder, Oxford: Westview Press 1998; pp. 3-33.

Hölldobler B, Wilson EO. The ants. Berlin: Harvard University Press, Springer-Verlag 1990. http://dx.doi.org/10.1007/978-3-662-10306-7

Passera L, Aron S. Les fourmis: comportement, organisation sociale et évolution. Ottawa: Les Presses Scientifiques du CNRC, Canada 2005.

Cammaerts MC. Navigation system of the ant Myrmica rubra (Hymenoptera, Formicidae). Myrmecol News 2012; 16: 111-121.

Passera L. La véritable histoire des fourmis. Paris: Librairie Fayard 2006.

Keller L, Gordon E. La vie des fourmis. Paris: Odile Jacob 2006.

Rachidi Z, Cammaerts MC, Debeir O. Morphometric study of the eye of three species of Myrmica (Formicidae). Belg J Entomol 2008; 10: 81-91.

Cammaerts MC. Visual vertical subtended angle of Myrmica ruginodis and Myrmica rubra (Formicidae, Hymenoptera). Bull Soc R Belg Ent 2011; 147: 113-120.

Cammaerts MC. The visual perception of the ant Myrmica ruginodis (Hymenoptera – Formicidae). Biologia 2012; 67: 1165-1174. http://dx.doi.org/10.2478/s11756-012-0112-z

Cammaerts MC, Rachidi Z, Beke S, Essaadi Y. Use of olfactory and visual cues for traveling by the ant Myrmica ruginodis (Hymenoptera, Formicidae). Myrmecol News 2012; 16: 45-55.

Cammaerts MC, Nemeghaire S. Why do workers of Myrmica ruginodis (Hymenoptera, Formicidae) navigate by relying mainly on their vision? Bull Soc R Ent Belg 2012; 148: 42-52.

Cammaerts MC, Cammaerts R. Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis. Behav Proc 1980; 5: 251-270. http://dx.doi.org/10.1016/0376-6357(80)90006-6

Cammaerts MC, Gosset G. Ontogenesis of visual and olfactory kin recognition, in the ant Myrmica sabuleti (Hymenoptera, Formicidae). Ann Soc Ent Fr 2014; 50: 358-366. doi: 10.1080/0003792271.2014.981406

Cammaerts MC. Ants’ learning of nest entrance characteristics (Hymenoptera, Formicidae. Bull Ent Res 2014; 104(1): 29-34. http://dx.doi.org/10.1017/S0007485313000436

Cammaerts MC. Learning of trail following behaviour by young Myrmica rubra workers (Hymenoptera, Formicidae), ISRN Entomol 2013; 1-6. http://dx.doi.org/10.1155/2013/792891

Cammaerts MC. Learning of foraging area specific marking odor by ants (Hymenoptera, Formicidae). Trends in Entomology 2014; 10: 11-19.

Cammaerts MC. Performance of the species-typical alarm response in young workers of the ant Myrmica sabuleti is induced by interactions with mature workers. J Ins Sciences 2014; 14: 234. http://dx.doi.org/10.1093/jisesa/ieu096

Cammaerts MC, Cammaerts R. Ontogenesis of ants’ cognitive abilities (Hymenoptera, Formicidae). Advanced Studies in Biology 2015; 7: 335-348 + synopsis: 349-350.

Cammaerts MC, Gosset G. Impact of age, activity and diet on the conditioning performance in the ant Myrmica ruginodis used as a biological model. Int J Biol 2014; 6: 10-20. ISSN 1916-9671 E-ISSN 1916-968X

Cammaerts MC, Rachidi Z, Gosset G. Physiological and ethological effects of caffeine, theophylline, cocaine and atropine; study using the ant Myrmica sabuleti (Hymenoptera, Formicidae) as a biological model. Int J Biol 2014; 3: 64-84. http://dx.doi.org/10.5539/ijb.v6n3p64

Cammaerts MC, Gosset G, Rachidi Z. Some physiological and ethological effects of nicotine; studies on the ant Myrmica sabuleti as a biological model. Int J Biol 2014; 6: 64-81. http://dx.doi.org/10.5539/ijb.v6n4p64

Cammaerts MC, Cammaerts R. Physiological and ethological effects of morphine and quinine, using ants as biological models. J Pharmac Biol 2014; 4: 43-58.

Cammaerts MC, Cammaerts D. Physiological and ethological effects of fluoxetine, on ants used as a biological model. Int J Biol 2015; 7: 1-18. http://dx.doi.org/10.5539/ijb.v7n2p1

Cammaerts MC, Cammaerts D. Physiological and ethological effects of antidepressants: a study using ants as biological models. Int J Pharmac Science Invention 2015; 4(2): 4-24. ANED 27.6718/04204024

Cammaerts MC, Cammaerts D. Potential harmful effects of carbamazepine on aquatic organisms, a study using ants as invertebrate models. Int J Biol 2015; 7: 75-93. http://dx.doi.org/10.5539/ijb.v7n3p75

Cammaerts MC, Cammaerts R. Effects of buprenorphine and methadone, two analgesics used for saving humans dependent on morphine consumption. Int J Pharmac Science Invention 2015; 4: 1-19.

Siegel S, Castellan NJ. Nonparametric statistics for the behavioural sciences. Singapore: McGraw-Hill Book Company 1989.

Cammaerts-Tricot MC. Phéromone agrégeant les ouvrières de Myrmica rubra. J Ins Physiol 1973; 19: 1299-1315. http://dx.doi.org/10.1016/0022-1910(73)90213-8

Cammaerts MC, Morel F, Martino F, Warzée N. An easy and cheap software-based method to assess two-dimensional trajectories parameters. Belg J Zool 2012; 142: 145-151.

Cammaerts MC. Colour vision in the ant Myrmica sabuleti MEINERT, 1861 (Hymenoptera: Formicidae). Myrmecol News 2007; 10: 41-50.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Marie-Claire Cammaerts, Roger Cammaerts , Axel Dero