Pulse Phytonutrients: Nutritional and Medicinal Importance
PDF

Keywords

 Pulses, polyphenols, carotenoids, saponins, tocopherols, folates.

How to Cite

Jagdish Singh, Rajni Kanaujia, & N.P. Singh. (2016). Pulse Phytonutrients: Nutritional and Medicinal Importance. Journal of Pharmacy and Nutrition Sciences, 6(4), 160–171. https://doi.org/10.6000/1927-5951.2016.06.04.5

Abstract

Pulses are important food crops which offer significant nutritional and health advantages due to their high protein content and a unique nutritional profile, i.e., low fat source of digestible protein, dietary fibre, complex carbohydrates, resistant starch and a number of essential vitamins, especially, the B-group vitamin B9 (folate). In addition to these vitamins and minerals contributing to a healthy diet, pulses contain a number of non-nutritive bioactive substances including enzyme inhibitors, lectins, saponins, phytates, phenolic compounds and oligosaccharides. The latter contributes beyond basic nutritional value and is particularly helpful in the fight against non-communicable diseases often associated with diet transitions and rising incomes. Phytic acid exhibits antioxidant activity and protects DNA damage, phenolic compounds have antioxidant and other important physiological and biological properties, and galacto-oligosaccharides may elicit prebiotic activity. Research findings on different phytochemicals in pulse seeds and their role in preventing the lifestyle diseases has been discussed. Encouraging awareness of the nutritional value of pulses can help consumers adopt healthier diets and also could be an important dietary factor in improving longevity.

https://doi.org/10.6000/1927-5951.2016.06.04.5
PDF

References

World health statistics 2012, Part II: Non-communicable diseases: a major health challenge of the 21st century, World Health Organization, ISBN 978 92 4 156444 1.

Mutch DM, Wahli W, Williamson G. Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J 2005; 19: 1602-6. http://dx.doi.org/10.1096/fj.05-3911rev

Newell-McGloughlin M. Nutritionally improved agricultural crops. Plant Physiol 2008; 147: 939-3. http://dx.doi.org/10.1104/pp.108.121947

Pai S, Ghugre PS, Udipi SA. Satiety from rice-based, wheat-based and rice-pulse combination preparations. Appetite 2005; 44: 263-1. http://dx.doi.org/10.1016/j.appet.2005.01.004

Weigle DS, Breen PA, Matthys CC, Callahan HS, Meeuws KE, Burden VR, Purnell JQ. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am J Clin Nutr 2005; 82: 41-8.

Williams PC, Singh U. Quality, screening and evaluation in pulse breeding. In: World Crops: Cool season food legumes: A global perspective of the problems and prospects for crop improvement in pea, lentil, faba bean and chickpea (Summerfield RJ, ed.) Kluwer Academic Publishers 1988; pp. 1-1230. http://dx.doi.org/10.1007/978-94-009-2764-3_38

Han IH, Baik BK. Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound and high hydrostatic pressure. Cereal Chem 2006; 83: 428-3. http://dx.doi.org/10.1094/CC-83-0428

Grabitske HA, Slavin Joanne L. Gastrointestinal effects of low-digestible carbohydrates; Critical Reviews in Food Science and Nutrition?2009; 49: 327. http://dx.doi.org/10.1080/10408390802067126

Wang N, Daun JK. The Chemical Composition and Nutritive Value of Canadian Pulses. Canadian Grain Commission Report 2004; 19-9.

Sánchez-Mata MC, Peñuela-Teruel MJ, Cámara-Hurtado M, et al. Determination of Mono-, di-, and oligosaccharides in legumes by high-performance liquid chromatography using an amino-bonded silica column. J Agric Food Chem 1998; 46: 3648-2. http://dx.doi.org/10.1021/jf980127w

Parnell JA, Reimer RA. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes 2012; 3: 29-4. http://dx.doi.org/10.4161/gmic.19246

Cani PD, Possemiers S , Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. hanges in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009; 58: 1091-3. http://dx.doi.org/10.1136/gut.2008.165886

Pereira DI, Gibson GR. Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Crit Rev Biochem Mol Biol 2002; 37: 259-1. http://dx.doi.org/10.1080/10409230290771519

Delzenne NM, Neyrinck AM, Cani PD. Gut microbiota and metabolic disorders: How prebiotic can work? Br J Nutr 2013; 109: S81-5. http://dx.doi.org/10.1017/S0007114512004047

Lattimer JM, Haub MD. Effects of dietary fiber and its components on metabolic health. Nutrients 2010; 2: 1266-9. http://dx.doi.org/10.3390/nu2121266

Howarth NC, Saltzman E, Roberts SB. Dietary fiber and weight regulation. Nutr Rev 2001; 59: 129-9. http://dx.doi.org/10.1111/j.1753-4887.2001.tb07001.x

Sievenpiper JL, Kendall CW, Esfahani A, Wong JM, Carleton AJ, Jiang HY, Bazinet RP, Vidgen E, Jenkins DJ. Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia 2009; 52: 1479-5. http://dx.doi.org/10.1007/s00125-009-1395-7

Tosh SM, Yada S. Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Res Internl 2010; 43: 450-60. http://dx.doi.org/10.1016/j.foodres.2009.09.005

Dalgetty DD, Baik BK. Isolation and characterization of cotyledon fibres from peas, lentils, and chickpea. Cereal Chem 2003; 80: 310-5. http://dx.doi.org/10.1094/CCHEM.2003.80.3.310

Neilson FH. Chromium. In: M. E. Shils, J. A. Olson, & M. Shike (Eds.), Modern nutrition in health and disease (8th ed.). Lea and Febiger: Philadelphia 1994; pp. 264-268.

Dang J, Arcot J, Shrestha A. Folate retention in selected processed legumes. Food Chemistry 2000; 68: 295-8. http://dx.doi.org/10.1016/S0308-8146(99)00202-2

Xu BJ, Chang SKC. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 2007; 72: S159-S166. http://dx.doi.org/10.1111/j.1750-3841.2006.00260.x

Duenas M, Sun B, Hernandez T, Estrella I, Spranger MI. Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.). J Agric Food Chem (2003); 51: 7999-4. http://dx.doi.org/10.1021/jf0303215

South PK, Miller DD. Iron binding by tannic acid; effects of selected ligands. Food Chem 1998; 63: 167-2. ttp://dx.doi.org/10.1016/S0308-8146(98)00040-5

Wang RS, Kies C. Niacin, thiamine, iron and protein status of humans as affected by the consumption of tea (Camellia sinensis) infusions. Plant Foods Human Nutr 1991; 41: 337-3. http://dx.doi.org/10.1007/BF02310628

Shahidi F, Naczk M. Phenolic compounds in fruits and vegetables. In: Phenolics in Food and Nutrceuticals. CRC, LLC, 2004; pp. 131-156.

Scalbert A, Manach, C, Morand C, Remesy C. Dietary phenols and the prevention of disease. Crit Rev Food Sci Nutr 2005; 45: 287. http://dx.doi.org/10.1080/1040869059096

Xu BJ, Chang SKC. Phenolic substance characterization and chemical and cell-based antioxidant activities of 11 entils grown in the Northern United States. J Agric Food Chem 2010; 58: 1509-7. http://dx.doi.org/10.1021/jf903532y

Tsopmo A, Muir AD. Chemical profiling of lentil (Lens culinaris Medik.) cultivars and isolation of compounds. J Agric Food Chem 2010; 58: 8715-1. http://dx.doi.org/10.1021/jf101412y

USDA-Iowa state university database on the isoflavone content of foods. 2002; Washington, DC: Agricultural Research Service, U.S. Department of Agriculture.

Wood JA, Grusak MA. Nutritional value of chickpea. In: Chickpea breeding and management. pp. (SS Yadav, R Redden, W Chen and B Sharma, editors

Champ MM. Non-nutrient bioactive substances of pulses. British Journal of Nutrition 2002; 88: S307-9. http://dx.doi.org/10.1079/BJN2002721

Mazur WM, Duke JA, Wahala K, et al. Isoflavonoids and lignans in legumes: nutritional and health aspects in humans. J Nutritional Biochem 1998; 9: 193. http://dx.doi.org/10.1016/S0955-2863(97)00184-8

Cassidy A, Albertazzi P, Lise Nielsen I, Hall W, Williamson G, Tetens I, et al. Critical review of health effects of soyabean phyto-oestrogens in post-menopausal women. The Proceedings of the Nutrition Society 2006; 65: 76-2. http://dx.doi.org/10.1079/PNS2005476

Beninger CW, Hosfield GL. Antioxidant activity of extracts, tannin fractions, and pure flavonoids from Phaseolus vulgaris L. J Agric Food Chem 2003; 51: 7879-3. http://dx.doi.org/10.1021/jf0304324

AçarÖzge C, Vural Gökmen, Nicoletta Pellegrini, Vincenzo Fogliano. Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. Eur Food Res Technol 2009; 229: 961-9. http://dx.doi.org/10.1007/s00217-009-1131-z

Sreeramulu D, Reddy CVK, Raghunath M. Antioxidant activity of commonly consumed cereals, millets, pulses and legumes in India. Ind J Biochem Biophys 2009; 46: 112-5.

Belitz HD, Weder JKP. Protein inhibitors of hydrolases in plants foodstuffs. Food Reviews International 1990; 6: 151-1. http://dx.doi.org/10.1080/87559129009540866

Lajolo FM, Finardi-Filho F, Menezes EW. Amylase inhibitors in Phaseolus vulgaris beans. Food Technology 1991; 45: 119-1.

Grant G, Dorward PM, Buchan WC, Armour JC, Pusztai A. Consumption of diets containing soya beans (Glycine max), kidney beans (Phaseolus vulgaris), cowpeas (Vigna unguiculata) or lupin seeds (Lupinus augustifolius) by rats for up to 700 days: Effects on body composition and organ weights. British Journal of Nutrition 1995; 73: 17-9. http://dx.doi.org/10.1079/BJN19950005

González de Mejía, Rocha N, Winter HC, Goldstein IJ. Differential effect of a lectin from mesquite (Prosopisjuli flora) on HeLa and normal human keratinocyte cells. The FASEB Journal 2002; 15: C128.

Grant G, Alonso R, Edwards JE, Murray S. Dietary soya beans and kidney beans stimulate secretion of cholecystokinin and pancreatic digestive enzymes in 400-day-old Hooded-Lister rats but only soya beans induce growth of the pancreas. Pancreas 2000; 20: 305-2. http://dx.doi.org/10.1097/00006676-200004000-00013

Reynoso-Camacho RE. Mejia Gonzalez de, Loarca-Pina G. Purification and acute toxicity of a lectin extracted from tepary bean (Phaseolus acutifolius). Food and Chemical Toxicology 2003; 41: 21-7. http://dx.doi.org/10.1016/S0278-6915(02)00215-6

Radberg K, Biernat M, Linderoth A, Zabielski R, Pierzynowski SG, Westrom BR. Enteral exposure to crude red kidney bean lectin induces maturation of the gut in suckling pigs. Journal of Animal Science 2001; 79: 2669-8. http://dx.doi.org/10.2527/2001.79102669x

Pusztai A, Grant G, Duguid T, Brown DS, Peumans WJ and Van Damme EJ, et al. Inhibition of starch digestion by ?-amylase inhibitor reduces the efficiency of utilization of dietary proteins and lipids and retards the growth of rats. Journal of Nutrition 1995; 125: 1554-2.

Habiba RA. Changes in anti-nutrients, protein solubility, digestibility and HCl-extractability of ash and phosphorus in vegetable peas as affected by cooking methods. Food Chemistry 2002; 77: 187-2. http://dx.doi.org/10.1016/S0308-8146(01)00335-1

Cuadrado CG, Hajos C, Burbano MM. Pedrosa, G Ayet and Muzquiz M, et al. Effect of natural fermentation on the lectin of lentils measured by immunological methods. Food and Agricultural Immunology 2002; 14: 41-9. http://dx.doi.org/10.1080/09540100220137655

Zhang J, Shi J, Ilic S, Jun XS, Kakuda Y. Biological properties and characterization of lectin from red kidney bean (Phaseolus vulgaris). Food Review International 2009; 25: 12-7. http://dx.doi.org/10.1080/87559120802458115

Jordinson M, El-Hariry I, Calnan D, Calam J, Pignatelli M. Vicia faba agglutinin, the lectin present in broad beans stimulates differentiation of undifferentiated colon cancer cells. Gut 1999; 44: 709-4. http://dx.doi.org/10.1136/gut.44.5.709

Pusztai A, Grant G, Buchan WC, Bardocz S, De Carvalho AF, Ewen SW. Lipid accumulation in obese Zucker rats is reduced by inclusion of raw kidney bean (Phaseolus vulgaris) in the diet. British Journal of Nutrition 1998; 79: 213-1. http://dx.doi.org/10.1079/BJN19980033

Benveniste P. Sterol biosynthesis. Annual Review of Plant Physiology 1986; 37: 275-8. http://dx.doi.org/10.1146/annurev.pp.37.060186.001423

Weihrauch JL, Gardner JM. Sterol content of foods of plant origin. Journal of the American Dietetic Association 1978; 73: 39-4.

Duane WC. Effects of legume consumption on serum cholesterol, biliary lipids, and sterol metabolism in humans. Journal of Lipid Research 1997; 38: 1120-8.

Fenwick DE, Oakenfull D. Saponin content of food plants and some prepared foods. Journal of the Science of Food and Agriculture 1983; 34: 186-191. http://dx.doi.org/10.1002/jsfa.2740340212

Gylling H, Miettinen TA. The effect of plant stanol- and sterol-enriched foods on lipid metabolism, serum lipids and coronary heart disease. Annals of Clinical Biochemistry 2006; 42: 254-3. http://dx.doi.org/10.1258/0004563054255605

Zhou JR, Erdman Jr. JW. Phytic acid in health and disease. Critical Reviews in Food Science and Nutrition 1995; 35: 495-8. http://dx.doi.org/10.1080/10408399509527712

Vucenik I, Shamsuddin AM. Protection against cancer by dietary IP6 and inositol. Nutrition and Cancer 2006; 55: 109-125. http://dx.doi.org/10.1207/s15327914nc5502_1

Weaver CM, Kannan S. Phytate and mineral bioavailability. In: Sathe and S.K. Reddy, Editors, Food phytates, CRC, Boca Raton 2002; pp. 211-224.

Welch RM, Graham RD. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany 2004; 55: 353-4. http://dx.doi.org/10.1093/jxb/erh064

Sandberg AS. Bioavailability of minerals in legumes. British Journal of Nutrition 2002; 88: 281-5. http://dx.doi.org/10.1079/BJN/2002718

Fredlund K, Isaksson M, Rossander-Hulthén L, Almgren A, Sandberg AS. Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate. Journal of Trace Elements in Medical Biology 2006; 20: 49-7. http://dx.doi.org/10.1016/j.jtemb.2006.01.003

Morris ER, Hill AD. Inositol phosphate content of selected dry beans, peas, and lentils, raw and cooked. Journal of Food Composition and Analysis 1996; 9: 2-2. http://dx.doi.org/10.1006/jfca.1996.0002

Dintzis FR, Lehrfeld J, Nelsen TC, Finney PL. Phytate content of soft wheat brans as related to kernel size, cultivar, location, and milling and flour quality parameters. Cereal Chemistry 1992; 69: 577-1.

Shamsuddin AM. Anti-cancer function of phytic acid. International Journal of Food Science and Technology 2002; 37: 769-2. http://dx.doi.org/10.1046/j.1365-2621.2002.00620.x

Minihane AN, Rimbach G. Iron absorption and the iron binding and anti-oxidant properties of phytic acid. International Journal of Food Science and Technology 2002; 37: 741-8. http://dx.doi.org/10.1046/j.1365-2621.2002.00619.x

Grases F, Costa-Bauza A, Perelló J, Isern B, Vucenik I, Valiente M, et al. Influence of concomitant food intake on the excretion of orally administered myo-inositol hexaphosphate in humans. Journal of Medicinal Food 2006; 9: 72-6. http://dx.doi.org/10.1089/jmf.2006.9.72

Steer TE, Gibson GR. The microbiology of phytic acid metabolism by gut bacteria and relevance for bowel cancer. International Journal of Food Science and Technology 2002; 37: 783. http://dx.doi.org/10.1046/j.1365-2621.2002.00616.x

Berdanier CD. Is inositol an essential nutrient? Nutrition Today 1992; 27: 22-6. http://dx.doi.org/10.1097/00017285-199203000-00005

Einat H, Belmaker RH. The effects of inositol treatment in animal models of psychiatric disorders. Journal of Affective Disorders 2001; 62: 113-1. http://dx.doi.org/10.1016/S0165-0327(00)00355-4

Shamsuddin AM. Anti-cancer function of phytic acid. International Journal of Food Science and Technology 2002; 37: 769-2. http://dx.doi.org/10.1046/j.1365-2621.2002.00620.x

Wattenberg LW, Wiedmann TS, Estensen RD, Zimmerman CL, Galbraith AR, Steele VE, et al. Chemoprevention of pulmonary carcinogenesis by brief exposures to aerosolized budesonide or beclomethasone dipropionate and by the combination of aerosolized budesonide and dietary myo-inositol. Carcinogenesis 2000; 21: 179-2. http://dx.doi.org/10.1093/carcin/21.2.179

Estensen RD, Wattenberg LW. Studies of chemopreventive effects of myo-inositol on benzo[a

Nishino H, Murakoshi M, Masuda M, Tokuda H, Satomi Y, Onozuka M, et al. Suppression of lung and liver carcinogenesis in mice by oral administration of myo-inositol. Anticancer Research 1999; 19: 3663-4.

Jenab M, Thompson LU. The influence of phytic acid in wheat bran on early biomarkers of colon carcinogenesis. Carcinogenesis 1998; 19: 1087-2. http://dx.doi.org/10.1093/carcin/19.6.1087

Oakenfull D, Sidhu GS. Could saponins be a useful treatment for hypercholesterolemia? Eur J Clin Nutr 1990; 44: 79-8.

Tokuda H, Konoshima T, Kozuka M, Kimura T. Inhibition of 12-o-tetradecanoylphorbol-13-acetate-promoted mouse skin papilloma saponins. Oncology 1991; 48: 77. http://dx.doi.org/10.1159/000226899

Mariano B, Simona D, Arturo B, Alessandra C. Broad spectrum anticancer activity of Myo-Inositol and Inositol Hexakisphosphate. International Journal of Endocrinology 2016; 14.

Shi J, Arunasalam K, Yeung D, Kakuda Y, Mittal G, Jiang Y. Saponins from edible legumes: Chemistry, processing, and health benefits. Journal of Medicinal Food 2004; 7: 67-8. http://dx.doi.org/10.1089/109662004322984734

Milgate J, Roberts DCK. The nutritional & biological significance of saponins. Nutrition Research 1996; 15: 1223-9. http://dx.doi.org/10.1016/0271-5317(95)00081-S

West LG, Greger JL. In vitro studies on saponin vitamin complexation. J Food Sci 1978; 43: 1340-1. http://dx.doi.org/10.1111/j.1365-2621.1978.tb15308.x

Rochfort S, Panozzo J. Phytochemicals for health, the role of pulses. Journal of Agricultural and Food Chemistry 2007; 55: 7981-4. http://dx.doi.org/10.1021/jf071704w

Price KR, Eagles J, Fenwick GR. Saponin composition of 13 varieties of legume seed using fast atom bombardment mass-spectrometry. J Sci Food Agric 1988; 42: 183-3. http://dx.doi.org/10.1002/jsfa.2740420211

Taylor WG, Richards KW. Plant compositions enriched in dehydrosoyasaponin I (D-I) and methods of producing such compositions. World Patent WO 2008083461; 2008.

Oakenfull D. Saponins in food - a review. Food Chem 1981; 6: 19. http://dx.doi.org/10.1016/0308-8146(81)90019-4

Ruiz RG, Price KR, Arthur, AE, Rose ME, Rhodes MJC, Fenwick RG. Effect of soaking and cooking on the saponin content and composition of chickpeas (Cicer arietinum) and lentils (Lens culinaris). Journal of Agricultural and Food Chemistry 1996; 44: 1526. http://dx.doi.org/10.1021/jf950721v

El-Adawy TA. Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Foods for Human Nutrition 2002 57: 83-7. http://dx.doi.org/10.1023/A:1013189620528

Gupta Y. Anti-nutritional and toxic factors in food legumes: a review. Plant Foods Hum Nutr 1987; 37: 201-8. http://dx.doi.org/10.1007/BF01091786

Khokhar S, Chauhan BM. Antinutritional factors in moth bean: Varietal differences and effects of methods of domestic processing and cooking. Journal of Food Science 51: 591-4. http://dx.doi.org/10.1111/j.1365-2621.1986.tb13887.x

Daveby YDAP, Betz JM, Musser SM. Effect of storage and extraction on ratio of soyasaponin I to 2,3-dihydro-2,5-dihydroxy-6-methyl-4-pyrone-conjugated soyasaponin I in de-hulled peas (Pisum sativum L.). Journal of the Science of Food and Agriculture 1998; 32: 141-6. http://dx.doi.org/10.1002/(SICI)1097-0010(199809)78:1<141::AID-JSFA169>3.0.CO;2-6

Kataria A, Chauhan BM, Punia D. Anti-nutrients in amphidiploids (black gram × Mung bean): Varietal differences and effect of domestic processing and cooking. Plant Foods for Human Nutrition 1989; 39: 257-6. http://dx.doi.org/10.1007/BF01091936

Duhan A, Khetarpaul N, Bishnoi S. Saponin content and trypsin inhibitor activity in processed and cooked pigeon pea cultivars. International Journal of Food Science and Nutrition 2001; 52: 53-59. http://dx.doi.org/10.1080/09637480020027200

Thompson LU. Potential health benefits and problems associated with antinutrients in foods. Food Res Intnl 1993; 26: 131-9. http://dx.doi.org/10.1016/0963-9969(93)90069-U

Sidhu GS, Oakenful DG. A mechanism for the hypocholesterolemic activity of saponins. Br J Nutr 1986; 55: 643-9. http://dx.doi.org/10.1079/BJN19860070

Moreau RA, Whitaker BD, Hicks KB. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 2002; 41: 457. http://dx.doi.org/10.1016/S0163-7827(02)00006-1

Geil PB, Anderson JW. Nutrition and health implications of dry beans: A review. Journal of the American College of Nutrition 1994; 13: 549-558. http://dx.doi.org/10.1080/07315724.1994.10718446

Aubert M, Panico L, Crotte C, Gibier P, Lombardo D, Sadoulet MO, et al. Restoration of alpha (1,2) fucosyltransferase activity decreases adhesive and metastatic properties of human pancreatic cancer cells. Cancer Research 2000; 60: 1449-6.

Godlewski MM, Slazak P, Zabielski R, Piastowska A, Gralak MA. Quantitative study of soybean-induced changes in proliferation and programmed cell death in the intestinal mucosa of young rats. J Physiol Pharmacol 2006; 57: 125-3.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2016 Jagdish Singh, Rajni Kanaujia , N.P. Singh