Increase of Healthy Food Quality among the Kazakhstan Population
PDF

Keywords

Functional ingredients, positive nutrition products, milk and dairy products, meat and meat products, enrichment, environment.

How to Cite

Z. Yessimsiitova, N. Ablaikhanova, S. Sagyndykova, G. Tussupbekova, M. Kulbayeva, G. Atanbayeva, M.Aitzhan , & Z. Bissenbayeva. (2018). Increase of Healthy Food Quality among the Kazakhstan Population. Journal of Pharmacy and Nutrition Sciences, 8(3), 150–153. https://doi.org/10.6000/1927-5951.2018.08.03.10

Abstract

At present, one of the most important urgent issues is the study of healthy nutrition of the population of Kazakhstan. Proper nutrition ensures the growth and development of children, contributes to the prevention of diseases, increase the capacity for work and prolong the life of people, while creating conditions for adequate adaptation to the environment.
Most of the population of Kazakhstan because of technological processing, the use of inadequate food raw materials, influence of other causes, does not receive the necessary amount of essential components of food, which lead to illnesses, premature aging and shortening of life.
The situation aggravates by the low cultural level of the population in matters of rational nutrition and the lack of skills for healthy lifestyles.
In this regard, the main task in the work was to study methods of improving the health and quality of life of the population of Kazakhstan, especially those living in zones of environmental problems and contacting with harmful factors.

https://doi.org/10.6000/1927-5951.2018.08.03.10
PDF

References

Kochetkova AA, Tuzhilkin VI, Nesterova IN, Kolesnov AYu, Voitkevich ND. Nutrition Issues 2000; 4.

Gayazova AO, Rebezov MB, Pauls EA, Akhmedyarova RA, Kosolapova AS. Perspective directions of development of production of meat semi-finished products. The Young Scientist 2014; 9(68): 127-129.

Dogareva NG, Stadnikova SV, Rebezov MB. Creation of new types of products from raw materials of animal origin and non-waste technologies for their production. University procedia as a regional center of education, science and culture. Orenburg, 2012; pp. 945-953.

Raikina EYu, Dodonkin YuV. Theory of Commodity Science. M.: Academy, 2005.

Teplov VI, Seroshtan MV, Boryaev VE, Panasenko VA. Commercial Merchandising A Textbook. - Third ed. - M.: Publishing House "Dashkov and Co., 2005.

Timofeeva VA. Commodity research of food products: Textbook. - Rostov n / a.: Phoenix, 2008.

Zinina OV, Rebezov MB. Technological methods of modification of collagen-containing by-products. Meat Industry 2012; 5: 34-36.

Goroshchenko L. Bread and bakery products. Food Business 2006; 8.

Zinina OV, Rebezov MB, Solovyova AA. Biotechnological processing of meat raw materials. V. Novgorod: Novgorod Technopark 2013; p. 272.

Das M, Gabriely I, Barzilai N. Caloric restriction, body fat and ageing in experimental models. Obes Rev 2004; 5: 13-19. https://doi.org/10.1111/j.1467-789X.2004.00115.x

Fluck CE, Slotboom J, Nuoffer JM, Kreis R, Boesch C, Mullis PE. Normal hepatic glycogen storage after fasting and feeding in children and adolescents with type 1 diabetes. Pediatr Diabetes 2003; 4: 70-76. https://doi.org/10.1034/j.1399-5448.2003.00015.x

El-Serag HB, Tran T, Everhart JE. Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology 2004; 126: 460-468. https://doi.org/10.1053/j.gastro.2003.10.065

Cohen SE, Tseng YH, Michael MD, Kahn CR. Effects of insulin-sensitizing agents in mice with hepatic insulin resistance. Diabetologia 2004; 47: 407-411. https://doi.org/10.1007/s00125-003-1320-4

Wright EM, Turk E, Zabel B, Mundlos S, Dyer J. Molecular genetics of intestinal glucose transport. J Clin Invest 1991; 88: 1435-40. https://doi.org/10.1172/JCI115451

DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev 1997; 5: 177-269.

Taher M, Amiroudine MZAM, Zakaria TMFST, Susanti D, Ichwan SJA, Kaderi MA, Ahmed OU, Zakaria ZA. ?-Mangostin improves glucose uptake and inhibits adipocytes differentiation in 3T3-L1 Cells via PPAR-?, GLUT-4, and leptin expressions. Evidence-Based Complementary and Alternative Medicine 2015; 2015: 1-9.

Aisha A, Abu-Salah K, Siddiqui M, Ismail Z, Majid A. Quantification of ?-, ?- dan ?-mangostin in Garcinia mangostana fruit rind extracts by a reverse phase high performance liquid chromatography. Journal of Medicinal Plants Research 2012; 6(29): 4526-4534.

Chaverri J, Rodr?guez N, Ibarra M, Rojas J. Medical properties of mangosteen (Garcinia mangostana). Food and Chemical Toxicology 2008; 46: 3227-3239. https://doi.org/10.1016/j.fct.2008.07.024

Reddy J, Ravikumar N, Gaddamanugu G, Naresh K, Rajan S, Solomon K. Synthesis, crystal structure, spectral charac-terization and fluorescence studies of salts of ?-mangostin with APIs. Journal of Molecular Structure 2013: 137-143. https://doi.org/10.1016/j.molstruc.2013.01.058

Ryu H, Cho J, Long M, Yuk H, Kim Y, Jung S, Lee B, Park K. ?-glukosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Journal of Phytochemistry 2011; 72: 2148-2154. https://doi.org/10.1016/j.phytochem.2011.08.007

Ai J, Wang N, Yang M, Du ZM, Zhang YC, Yang BF. Development of Wistar rat model of insulin resistance, World Journal of Gastroenterology 2005; 11(24): 3675-3679. https://doi.org/10.3748/wjg.v11.i24.3675

Winzell MS, Ahre´n B. The high-fat diet-fed mouse a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 2004; 53(3): 215-19. https://doi.org/10.2337/diabetes.53.suppl_3.S215

Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. American Physiological Society Journal 1998; 78(3): 783-809. https://doi.org/10.1152/physrev.1998.78.3.783

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 1993; 65(2): 55-63.

Susantia D, Amiroudineb MZAM, Rezalic MF, Taherb M. Friedelin and lanosterol from Garcinia prainiana stimulated glucose uptake and adipocytes differentiation in 3T3-L1 adipocytes. Natural Product Research 2013; 27(4-5): 417-424. https://doi.org/10.1080/14786419.2012.725399

Shin E, Choi KM, Yoo HS, Lee CK, Hwang BY, Lee MK. Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biological and Pharmaceutical Bulletin 2010; 33(9): 1610-1614. https://doi.org/10.1248/bpb.33.1610

Matsuura N, Gamo K, Miyachi H, Iinuma M, Kawada T, Takahashi N, Akao Y, Tosa H. ?-Mangostin from Garcinia mangostana Pericarps as a dual agonist that activates both PPAR-? and PPAR-?. Biosci Biotechnol Biochem 2013; 77(12): 2430-2435. https://doi.org/10.1271/bbb.130541

Dubois M, Pattou F, Kerr-Conte J, Gmyr V, Vandewalle B, Deremaux P, Auwerx J, Schoonjans K, Lefebvre J. Expression of peroxisome proliferator-activated receptor ? (PPAR-?) in normal human pancreatic islet cells. Diabetologia 2000; 43: 1165-1169. https://doi.org/10.1007/s001250051508

Hoftnann CA, Colca JR. New oral thiazolidinedione antidiabetic agents act as insulin sensitizers. Diabetes Care 1992; 15: 1075-1078. https://doi.org/10.2337/diacare.15.8.1075

Willson TM, Cobb JE, Cowan DJ, Wiethe RW, Correa ID, Prakash SR, Beck KD, Moore LB, Kliewer SA, Lehmann JM. The structure-activity relationship between peroxisome proliferator-activated receptor ? agonist and the antihyperglycemic activity of thiazolidinediones. J Med Chem 1996; 39: 665-668. https://doi.org/10.1021/jm950395a

Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM. mPPAR72, tissue specific regulator of an adipocyte enhancer. Genes Dev 1994; 8: 1224-1234. https://doi.org/10.1101/gad.8.10.1224

Hotamisligil GS, Spiegelman BM. Tumor necrosis factor ?: a key component. Diabetes 1997; 46.

Hofmann C, Lorenz K, Braithwaite SS, Colca JR, Palazuk BJ, Hotamisligil GS, Spiegelman BM. Altered gene expression for tumor necrosis factor-? and its receptors during drug and dietary modulation of insulin resistance. Endocrinology 1994; 134: 264-270. https://doi.org/10.1210/endo.134.1.8275942

Zncke YF, Hallakou RS, Doare L, Foufelle F, Kergoat M, Guerre-Millo M, Berthault MF, Dugail I, Morin J, Auwerx J, Ferre P. Pioglitazone induces in vivo adipocyte differentiation in the obese. Diabetes 1997; 1393-1399.

Lehmann JM, Moore LB, Smith-Oliver TA, Wilkinson WO, Wilson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor ? (PPAR-?). J Biol Chem 1995; 270: 12953-12956. https://doi.org/10.1074/jbc.270.22.12953

Kletzien RF, Clarke SD, Ulrich RG. Enhancement of adipocyte differentiation by an insulin-sensitizing agent. Mol Pharmacol 1992; 41: 393-398.

Sandouk T, Reda D, Hofmann C. Antidiabetic agent pioglitazone enhances adipocyte differentiation of 3T3-F442A cells. Am J Physiol 1993; 264: 1600-1608. https://doi.org/10.1152/ajpcell.1993.264.6.C1600

Brun RP, Tontonoz P, Forman BM, Ellis R, Chen J, Evans RM, Spiegelman BM. Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev 1996; 10: 974-984. https://doi.org/10.1101/gad.10.8.974

Ratwita W, Sukandar EY, Adnyana IK, Kurniati NF, Alpha mangostin and xanthone from mangosteen (Garcinia mangostana l.) role on glucose tolerance and glucose transporter-4 in diabetes mellitus. International Journal of Pharmacognosy and Phytochemical Research 2017; 9(9): 1206-1212.

Taher M, Amiroudine MZAM, Syafiq TMF, Zakaria T, Susanti D, Ichwan SJA, Kaderi MA, Ahmed QU, Zakaria ZA. ?-Mangostin improves glucose uptake and inhibits adipocytes differentiation in 3T3-L1 cells via PPAR-?, GLUT-4, and leptin expressions. Evidence-Based Complementary and Alternative Medicine 2015; 1-9. https://doi.org/10.1155/2015/740238

Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell 2001; 104(4): 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9

Yun JW. Possible anti-obesity therapeutics from nature-a review. Phytochemistry 2010; 71(14-15): 1625-1641. https://doi.org/10.1016/j.phytochem.2010.07.011

V´azquez-Vela MEF, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Archives of Medical Research 2008; 39(8): 715-728. https://doi.org/10.1016/j.arcmed.2008.09.005

Brun RP, Spiegelman BM. PPAR-gamma and the molecular control of adipogenesis. Journal of Endocrinology 1997; 155(2): 217-218. https://doi.org/10.1677/joe.0.1550217

Choi SS, Cha BY, Iida K. Artepillin C. as a PPAR-? ligand, enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Biochemical Pharmacology 2011; 81(7): 925-933. https://doi.org/10.1016/j.bcp.2011.01.002

Huang C, Zhang Y, Gong Z. Berberine inhibits 3T3-L1 adipocyte differentiation through the PPAR? pathway. Biochemical and Biophysical Research Communications 2006; 348(2): 571-578. https://doi.org/10.1016/j.bbrc.2006.07.095

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2018 Z. Yessimsiitova , N. Ablaikhanova ; S. Sagyndykova ; G. Tussupbekova , M. Kulbayeva , G. Atanbayeva ; M. Aitzhan  ; Z. Bissenbayeva