Effect of Salicylic Acid on Carotenoids and Chlorophyll Content in Mas Cotek (Ficus deltoidea Jack var. trengganuensis) Leaves and its Retinol Activity Equivalents (RAE)
PDF

Keywords

Salicylic acid, carotenoid content, retinol activity equivalents, Ficus deltoidea Jack var. trengganuensis.

How to Cite

Azrina Ismail, Norshazila Shahidan, NashriyahMat , & Rashidi Othman. (2020). Effect of Salicylic Acid on Carotenoids and Chlorophyll Content in Mas Cotek (Ficus deltoidea Jack var. trengganuensis) Leaves and its Retinol Activity Equivalents (RAE). Journal of Pharmacy and Nutrition Sciences, 10(1), 25–33. https://doi.org/10.29169/1927-5951.2020.10.01.5

Abstract

This study was conducted to determine the effect of different concentrations of salicylic acid (SA) (control, 0.01, 0.10, 1.00 mM) on carotenoids and chlorophyll content and its retinol activity equivalents (RAE) value in Ficus deltoidea Jack var. trengganuensis leaves. In this study, 12 seedlings of Ficus deltoidea Jack var. trengganuensis were sprayed with different concentrations of SA. Carotenoid content was determined using High-Performance Liquid Chromatography (HPLC) and chlorophyll content was determined using chlorophyll meter. Retinol activity equivalents were calculated using RAE formulation. From the results obtained, two types of carotenoids, lutein and β-carotene, were detected in HPLC. The highest lutein and β-carotene content present in Ficus deltoidea Jack var. trengganuensis leaves extract was found in 0.10 mM SA treatment (93.50b ± 0.71 µg/g DW) for lutein and (282.00b ± 46.67 µg/g DW) for β-carotene, while the lowest lutein compound was found in 1.00 mM SA treatment (30.25a ± 1.77 µg/g DW) while the least β-carotenoid content was found in (1.00 mM SA) treatment (63.00a ± 0.71 µg/g DW). The same goes for retinol activity equivalents, the highest retinol activity equivalents was recorded in 0.10 mM SA treatment while lowest in 1.00 mM SA treatment. For chlorophyll content, the highest reading was showed in 0.10 mM SA treatment (73.50b ± 0.71 µg/g DW) while the lowest reading was in 1.00mM SA treatment (42.10a ± 1.41 µg/g DW). From this study, it can be concluded that salicylic acid at a certain concentration could increase or improve the carotenoid or chlorophyll content. Thus, it could be an alternative source of carotenoid and chlorophyll for the food and pharmaceutical industry in the future.

https://doi.org/10.29169/1927-5951.2020.10.01.5
PDF

References

Hakiman M, Maziah M. Non enzymatic and enzymatic anti-oxidant activities in aqueous extract of differerent Ficus-deltoidea accessions J Med Plant Res 2009; 3(3): 120-131.

Fang J, Chen J, Henny R J, Chao CCT. Genetic relatedness of ornamental Ficus species and cultivars analyzed by amplified fragment length polymorphism markers. J Am Soc Hortic Sci 2007; 136: 807-815. https://doi.org/10.21273/JASHS.132.6.807

Hakiman M, Syed MA, Ahmad S, Maziah M. Flavonoid content in leaf extracts of different varieties of Ficusdeltoidea Jack using High Performance Liquid Chromatograph (HPLC). UMT 11th International Annual Symposium and Sustainability Science and Management; 2012: p. 470-473.

Nashriyah M, Nurrul Akmar R, Nor Zaimah AR, Norhaslinda H, Zanariah MN, Nur Fatihah HN, Abd Ghani Y, Abdul Manaf A. (Leaf morphological variations and heterophylly in Ficus deltoidea Jack (Moraceae). Sains Malays 2012; 41(5): 527-538.

Aris SRS, Mustafa S, Ahmat N, Jaafar FM, Ahmad R. Phenolic content and antioxidant activity of Ficus deltoidea var. angustifolia sp. Malaysian J Anal Sci 2009; 13: 146-150.

Aminudin N, Sin CY, Chee ES, Nee KI, Renxin L. Blood glucose lowering effect of Ficus deltoidea aqueous extract. Malaysian J Sci 2007; 26: 73-78.

Sulaiman MR, Hussain MK, Zakaria ZA, Somchit MN, Moin S, Mohamad AS, Israf DA. Evaluation of the antinociceptive activity of Ficus deltoidea aqueous extract. Fitoterapia 2008; 79: 557-561. https://doi.org/10.1016/j.fitote.2008.06.005

Sirisha N, Sreenivalusu M, Sangeeta K, Madhusudhana CC. Antioxidant properties of Ficus species-A review. Int J PharmTech Res 2010; 2(4): 2174-2182.

Zunoliza A, Khalid H, Zhari I, Rasadah MA. Anti-inflammatory activity of standardised extracts of leaves of three varieties of Ficus deltoidea. Int J Pharm Clin Res 2009; 1(3): 100-105.

Siti Fatimah Zahra MA, Mahmood AA, Hapipah MA, Suzita MN, Salmah I. Anti-ulceragonic activity of aqueous extract of Ficus deltoidea against ethanol-induced gastric mucosal injury in rats. Res J Med Sci 2009; 3(2): 42-46.

Suryati, Hazli N, Dachriyanus, Md Nordin HL. Structure elucidation of antibacterial compound from Ficus deltoidea Jack leaves. Indones J Chem 2011; 11(1): 67-70. https://doi.org/10.22146/ijc.21422

Oh MJ, Abdul Hamid M, Ngadiran S, Seo YK, Sarmidi MR, Park CS. Ficus deltoidea (Mas cotek) extract exerted anti-melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Arch Dermatol Res 2011; 303: 161-170. https://doi.org/10.1007/s00403-010-1089-5

Adam Z, Hamid M, Ismail A, Khamis S, Marsidi M. Antihyperglycemic and glucose tolerance activity of Ficus deltoidea ethanolic extract in diabetic rats. Malaysian J Health Sci 2010; 8(1): 25-30.

Raskin I, Skubatz H, Tang W, Meeuse BJD. SA levels in thermogenic and nonthermogenic plants. Ann Bot 1990; 66: 376-383. https://doi.org/10.1093/oxfordjournals.aob.a088037

Hayat Q, Hayat S, Ifran M, Ahmad A. Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 2010; 68: 14-25. https://doi.org/10.1016/j.envexpbot.2009.08.005

Rivas-San V, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 2011; 62: 3321-3338. https://doi.org/10.1093/jxb/err031

Larque-Saavedra A, Martin-Mex R. Effect of salicylic acid on the bio-productivity of plants. In: Hayat S, Ahmad A. (Eds). Salicylic Acid.A Plant Hormone. Dordrecht, The Netherlands: Springer Publishers; 2007.

Martin-Mex R, Nexticapan-Garcez A, Larqué-Saavedra A. Potential benefits of SA in food production. pp 299-313, In: S. Hayat, A. Ahmad, M.N. Nasser (eds.) SA Plant Growth and Development. Dordrecht, Heidelberg: Springer 2013; p. 389. https://doi.org/10.1007/978-94-007-6428-6_13

Popova L, Pancheva T. Uzunova A. Salicylicacid: Properties, biosynthesis and physiological role. Bulgarian J Plant Physiol 1997; 23: 85-93.

Maghsoudia K. Arvind MJ. Salicylic acid and osmotic stress effects on seed germination and Seedling growth of wheat (Triticum aestivum L.) cultivars. Plant Ecophysiol 2010; 2: 7-11.

Zahra S, Baghizadeh AB, Ali VSM, Ali Y. Mehdi Y. The salicylic acid effect on the tomato (Lycopersicum esculentum Mill.) sugar, protein and proline contents under salinity stress (NaCl). J Biophys Struct Biol 2010; 2: 35-41.

Szepesi A, Gemes K, Orosz G, Peto A, Takacs Z, Vorak M, Tari I. Interaction between salicylic acid and polyamines and their possible roles in tomato hardening processes. Acta Biol Szeged 2011; 55: 165-166.

Khan W, Prithviraj B, Smith DL. Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 2003; 160: 485-492. https://doi.org/10.1078/0176-1617-00865

Senaratna T, Touchell D, Bunn E, Dixon K. Acetylsalicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean andtomato plant. Plant Growth Regul 2000; 30: 157-161. https://doi.org/10.1023/A:1006386800974

European Food Safety Authority. Scientific Opinion on Dietary Reference Values for Vitamin A. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). EFSA Journal 2015; 13(3): 4028. https://doi.org/10.2903/j.efsa.2015.4028

WHO/FAO. Vitamin A. In: Vitamin and Mineral Requirements in Human Nutrition (2nd Edition). Report of a Joint FAO/WHO Expert Consultation, World Health Organization, Geneva 2004; p. 17-44.

IOM. Vitamin A. In: Dietary References Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. Food and Nutrition Board, Institute of Medicine. Washington DC: National Academy Press 2001; p. 82-161.

West CE, Eilander A, van Leishout M. Consequences of Revised Estimates of Carotenoid Bioefficacy for Dietary Control of Vitamin A Deficiency in Developing Country. J Nutr 2002; 132: 2920S- 2926S. https://doi.org/10.1093/jn/132.9.2920S

Essential Nutrition Actions: Improving Maternal, Newborn, Infant and Young Child Health and Nutrition;World Health Organization: Geneva, Switzerland, 2013.

Zeba AN, Sorgho H, Rouamba N, Zongo I, Rouamba J, Guiguemdë RT, Hamer DH, Mokhtar N, Ouedraogo JB. Major reduction of malaria morbidity with combined vitamin A and zinc supplementation in young children in Burkina Faso: A randomized double blind trial. Nutr J 2008; 7: 7. https://doi.org/10.1186/1475-2891-7-7

Shankar AH, Genton B, Semba RD, Baisor M, Paino J, Tamja S, Adiguma T, Wu L, Rare L, Tielsch JM, Alpers MP, West KP Jr. Effect of vitamin A supplementation on morbidity due to Plasmodium falciparum inyoung children in Papua New Guinea: A randomised trial. Lancet 1999; 354: 203-209. https://doi.org/10.1016/S0140-6736(98)08293-2

Stahl W, Sies H. Photoprotection by dietary carotenoids: Concept, mechanisms, evidence and future development. Mol Nutr Food Res 2012; 56(2): 287-95. https://doi.org/10.1002/mnfr.201100232

Ibañez E. Cifuentes A. Benefits of using algae as natural sources of functional 431 ingredients. J Sci Food Agric 2013; 93(4): 703-709. https://doi.org/10.1002/jsfa.6023

Othman R. Biochemistry and genetics of carotenoid composition in potato tubers. Lincoln University; 2009.

Loh FCW, Grabosky JC, Bassuk NL. Using the SPAD 502 meter to assess chlorophyll and nitrogen content of Benjamin Fig and Cottonwood leaves. Horttechnology 2002; 12: 682-686. https://doi.org/10.21273/HORTTECH.12.4.682

Czerpak R, Dobrzyn P, Krotke A, Kicinska E. The effect of Auxins and Salicylic Acid on Chlorophyll and Carotenoid Contents in Wolffia Arrhiza (L.) Wimm. (Lemnaceae) Growing on Media of Various Trophicities. Pol J Environ Stud 2002; 11(3): 231-235.

Shahba Z, Baghizadeh A. Yosefi M. The salicylic acid effect on the tomato (lycopersicum esculentum Mill.) germination, growth and photosynthetic pigment under salinity stress (NaCl). J Stress Physiol Biochem 2010; 6(3): 4-16.

Khodary SEA. Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolismvin salt-stressed maize plants. Int J Agric Biol 2004; 6: 5-8.

Cag S, Cevahir-Oz G, Sarsag M, Goren-Saglam, N. Effect of salicylic acid on pigment, protein content and peroxidase activity in excised sunflower cotyledons. Pak J Bot 2009; 41(5): 2297-2303.

Taguchi G, Yazawa T, Hayashida N, Okazaki M. Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin. Eur J Biochem 2001; 268: 4086-4094. https://doi.org/10.1046/j.1432-1327.2001.02325.x

Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, Li JM. Effect of salicylic acid on phenylpropanoids and phenyl-alanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 2006; 40: 64-72. https://doi.org/10.1016/j.postharvbio.2005.12.017

Ghasemzadeh A, Jaafar H, Karimi E, Ibrahim M. Involvement of salicylic acid on antioxidant and anticancer properties, anthocyanin production and chalcone synthase activity in ginger (Zingiber officinaleroscoe) varieties. Int J Mol Sci 2012; 13: 14828-14844. https://doi.org/10.3390/ijms131114828

Idrees M, Naeem N, Aftab T, Khan MMA. Salicylic acid mitigates salinity stress by improving antioxidant defense system and enhances vincristine and vinblastine alkaloids production in periwinkle. Acta Physiol. Plant 2011; 33: 987-999. https://doi.org/10.1007/s11738-010-0631-6

Turky?lmaz B, Aktas LY, Gu¨ven A. Salicylic acid induced some biochemical and physiological changes in Phaseolus vulgaris L. Sci Eng J Firat Univ 2005; 17: 319-326.

Malarz J, Stojakowska A, Kisiel W. Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichoriumintybus. Acta Physiol Plant 2007; 29: 127-132. https://doi.org/10.1007/s11738-006-0016-z

Harborne JB. The flavonoids: Advances in research since 1980. UK: Chapman and Hall 1988. https://doi.org/10.1007/978-1-4899-2913-6

Bouvier F, Backhaus R, Camara B. Induction and control of chromoplast specific carotenoids genes by oxidative stress. J Biol Chem 1998; 273: 30651-30659. https://doi.org/10.1074/jbc.273.46.30651

Zarin Kamar F, Tajik S, Soleimanpour S. Effects of altitude on anatomy and concentration of crocin, picrocrocin and safranal in Crocus sativus L. Aust J Crop Sci 2011; 7: 831-838.

Amanullah MM, Sekar S, Vincent S. Plant growth substances in crop production. Asian J Plant Sci 2010; 9: 215-222. https://doi.org/10.3923/ajps.2010.215.222

Tee ES, Ismail MN, Mohd Nasir A, Khatijah I. Nutrient Composition of Malaysian Foods. 4th Edition. Malaysian Food Composition Database Programme, Kuala Lumpur: Institute for Medical Research 1997; p. 310.

USDA. National Nutrient Database for Standard Reference 2016; Release 28. US Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory. Version Current: September 2015: http://www.ars.usda.gov.

Sundram K, Sambanthamurthi R, Tan YA. Palm Fruit Chemistry and Nutrition. Asia Pacific J Clin Nutr 2003; 12: 355-362.

Ceylan A. Tarla Tarimi. Ege Üniversitesi Ziraat Fakültesi Yayinlari 1994; 491: 107s.

Lavres Junior J, Deus Gomesdos Santos Junior J, Monteiro FA. Nitrate reductase activity and spad readings in leaf tissues of guinea grass submitted to nitrogen and potassium rates. Rev Bras Cienc Solo 2010; 34: 801-09. https://doi.org/10.1590/S0100-06832010000300022

Christensen LP, Peacock WL. Mineral nutrition and fertilization. In Raisin production manual, 102-14. Oakland, CA: University of California, Agricultural and Natural Resources Publication 2000; p. 3393.

Inugraha MDM, Widaryanto E. Response of Stevia (Stevia rebaudiana Bertoni M) to nitrogen and potassium Fertilization. IOSR J Agric Vet Sci 2014; 7: 47-55. https://doi.org/10.9790/2380-071014755

Shadchina TM, Dmitrieva VV. Leaf chlorophyll content as a possible diagnostic mean for the evaluation of plant nitrogen uptake from the soil. J Plant Nutr 1995; 18: 1427-37. https://doi.org/10.1080/01904169509364992

Horváth E, Szalai G, Janda T. Induction of abiotic stress tolerance by salicylic acid signaling. J Plant Growth Regul, 2007; 26: 290-300. https://doi.org/10.1007/s00344-007-9017-4

Uzunova AN, Popova LP. Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 2000; 38: 243-250. https://doi.org/10.1023/A:1007226116925

Mateo A, Muhlenbock P, Rusterucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S. Lesion Simulating Disease 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 2004; 136: 2818-2830. https://doi.org/10.1104/pp.104.043646

Melotto M, Underwood W, Koczan J, Nomura K, He SY. Plant stomata function in innate immunity against bacterial invasion. Cell 2006; 126: 969-980. https://doi.org/10.1016/j.cell.2006.06.054

Chandra A, Bhatt RK. Biochemical and physiological response to salicylic acid in relation to the systemic acquired resistance. Photosynthetica 1998; 35: 255-258. https://doi.org/10.1023/A:1006966908357

Fariduddin Q, Hayat S, Ahmad A. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 2003; 41: 281-284. https://doi.org/10.1023/B:PHOT.0000011962.05991.6c

Slaymaker DH, Navarre DA, Clark D, Del-Pozo O, Martin GB, Klessig DF. Physiological Roles in Plants. Proceedings of the National Academy of Sciences of the United States of America, 2002; 99: 11640-11645. https://doi.org/10.1073/pnas.182427699

Hayat Q, Hayat S, Alyemini MN, Ahmad A. Salicylic acid mediated changes in growth, photosynthesis, nitrogen metabolism and antioxidant defense system in Cicerarietinum L. Plant Soil Environ 2012; 58: 417-423. https://doi.org/10.17221/232/2012-PSE

Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A. Effect of salicylic acid on salinity induced changes in Brassica juncea. J Integr Plant Biol 2008; 50: 1-4. https://doi.org/10.1111/j.1744-7909.2008.00697.x

Yusuf M, Fariduddin Q, Varshney P, Ahmad A. Salicylic acid minimizes nickel and/or salinity-induced toxicity in Indian mustard (Brassica juncea) through an improved antioxidant system. Environ Sci Pollut Res 2012; 19: 8-18. https://doi.org/10.1007/s11356-011-0531-3

Pancheva TV, Popova LP, Uzunova AM. Effect of salicylic acid on growth and photosynthesis in barley plants. J Plant Physiol 1996; 149: 57-63. https://doi.org/10.1016/S0176-1617(96)80173-8

Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol 1997; 115: 137-149. https://doi.org/10.1104/pp.115.1.137

Moharekar ST, Lokhande SD, Hara T, Tanaka R, Tanaka A, Chavan PD. Effects of salicylic acid on chlorophyll and carotenoid contents on wheat and moong seedlings. Photosynthetica 2003; 41: 315-317. https://doi.org/10.1023/B:PHOT.0000011970.62172.15

Pancheva TV, Popova LP. Effect of the salicylic acid on the synthesis of ribulose- 1,5-bisphosphate carboxylase/ oxygenase in barley leaves. Plant Physiol 1998; 152: 381-386. https://doi.org/10.1016/S0176-1617(98)80251-4

Rivas-San V, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 2011; 62: 3321-3338. https://doi.org/10.1093/jxb/err031

Hayat S, Fariduddin Q, Ali B, Ahmad A. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agron Hung 2005; 53: 433-437. https://doi.org/10.1556/AAgr.53.2005.4.9

Ghai, N., Setia, R. C., & Setia, N. Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorphol 2002; 52: 83-87.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Azrina Ismail , Norshazila Shahidan , Nashriyah Mat  , Rashidi Othman