Mallotus Mollissimus and Solanum Erianthum Exhibit Antikinase, Antiphosphatase and Anti-Cancer Properties
PDF

Keywords

Cytotoxicity
kinase
Mallotus mollissimus
phosphatase
Solanum erianthum

How to Cite

Ismail, N. A., Matawali, A., Lee, P.-C., How, S.-E., Yazan, L. S. ., Goh, L. P. W., & Gansau, J. A. (2021). Mallotus Mollissimus and Solanum Erianthum Exhibit Antikinase, Antiphosphatase and Anti-Cancer Properties. Journal of Pharmacy and Nutrition Sciences, 11, 93–100. https://doi.org/10.29169/1927-5951.2021.11.12

Abstract

Cancer is a leading cause of death worldwide and caused by dysregulated signal transduction from kinase and phosphatases. Inhibitors of kinase and phosphatase have demonstrated anticancer properties. Therefore, this study aimed to investigate the antikinase, antiphosphatase and cytotoxic properties of Mallotus mollissimus (M. mollissimus) and Solanum erianthum (S. erianthum). Toxic activities against PP1, MKK1 and MSG5 assays were demonstrated by S. erianthum methanol extract. Bioassay-guided fractionation of the methanolic extracts showed that chloroform fraction (CE) of M. mollissimus exhibited toxic activity against PP1. Meanwhile, CE of S. erianthum showed positive activity on PP1 assay. Column chromatography separation of the CE has revealed that fractions F1 and F2 of M. mollissimus are toxic against PP1. Meanwhile, F1 and F2 CE fractions of S. erianthum were positive against PP1 and F9 fraction showed toxic activity in PP1 assay. Chloroform extracts of both plants exhibit cytotoxicity activity against HeLa, CaOV3 and MCF7 cell lines. This study demonstrated the potential of M. mollissimus and S. erianthum extracts in antikinase, antiphosphatase and anti-cancer activities which warrant further purification and identification.

https://doi.org/10.29169/1927-5951.2021.11.12
PDF

References

Ahmedin J, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global Cancer Statistics. CA Cancer: J Clin 2011; 61: 69-90.

https://doi.org/10.3322/caac.20107

National Cancer Registry (NCR), Malaysia, National cancer registry report: Malaysia cancer statistics-data and figure 2007, Ministry of Health, Malaysia 2007.

Biok J. Natural Compounds in cancer therapy, 1st ed. Oregon Medical Press, LLC 2001.

Seger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995; 9: 726-735.

https://doi.org/10.1096/fasebj.9.9.7601337

Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathway. Curr Opin Cell Biol 1997; 9: 180-186.

https://doi.org/10.1016/S0955-0674(97)80061-0

Shenolikar S. Protein Serine/Threonine Phoshatase - New Avenues for Cell Regulation. Ann Rev Cell Biol 1994; 10: 55-86.

https://doi.org/10.1146/annurev.cb.10.110194.000415

Hunter T. Protein Kinase and Phosphatase: The Yin and Yang of Protein Phosphorylation and Signaling. Cell 1995; 80: 225-236.

https://doi.org/10.1016/0092-8674(95)90405-0

Keyse SM. Protein phosphatase and the regulation of mitogen-activated protein kinase signaling. Curr Opin Cell Biol 2000; 12: 186-192.

https://doi.org/10.1016/S0955-0674(99)00075-7

Krauss G. Biochemistry of Signal Transduction and Regulation. 3rd ed. Weinheim: Wiley-VCH 2003.

https://doi.org/10.1002/3527601864

Huang D, Ding Y, Luo WM, Bender S, Qian CN, Kort E, Zhang ZF, VandenBeldt K, Duesbery NS, Resau JH. The Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res 2008; 68: 81-88.

https://doi.org/10.1158/0008-5472.CAN-07-5311

Peng A, Maller JL. Serine/threonine phosphatase in the DNA damage response and cancer. Oncogene 2010; 29: 5977-5988.

https://doi.org/10.1038/onc.2010.371

Chattopadhyay D, Arunachalam G, Mandal AB, Sur TK, Mandal SC, Bhattacharya SK. Antimicrobial and anti-inflammatory activity of folklore: Mallotus peltatus leaf extract. J Ethnopharmacol 2002; 82: 229-237.

https://doi.org/10.1016/S0378-8741(02)00165-4

Sierra SEC, Van Welzen PC. A taxonomic revision of Mallotus section Mallotus (Euphospbiaceae) in Malesia, Blumea. J Plant Taxon Plant Geo 2005; 50: 249-274.

https://doi.org/10.3767/000651905X622987

Arunachalam G, Paromita B, Chattopadhyay D. Phytochemical and phytotherapeutic evaluation of Mallotus peltatus (Geist.) Muell. Arg. var acuminatus and Alstonia macrophylla wall ex A. DC: Two ethno medicine of Andaman Islands, India. J Pharmacognosy Phytotherapy 2009; 1: 001-013.

Nurhanan MY, Asiah O, Mohd Ilham MA, Siti Syarifah MM, Norhayati I, Lili Sahira H. Anti-proliferative activities of 32 Malaysia plant species in breast cancer cell lines. J Trop Forest Sci 2008; 20: 77-81.

Tabata H, Katube T, Tsuma T, Ohta Y, Imawaka N, Utsumi T. Isolation and evaluation of the radical-scavenging activity of the antioxidants in the leaves of an edible plant, Mallotus japonicus. Food Chem 2008; 109: 64-71.

https://doi.org/10.1016/j.foodchem.2007.12.017

Blomqvist MM, Nguyen T. Solanum erianthum D. Don[Internet] Record from Proseabase. de Padua L.S., Bunyapraphatsara N. and Lemmens R.H.M.J. (Editors). PROSEA (Plant Resources of South-East Asia) Foundation, Bogor, Indonesia. 1999. http://www.proseanet.org. Accessed from Internet: 19-Feb-2020

Ignacimuthu S, Ayyanar M, Sankara Sivaraman K. Ethnobotanical investigations among tribes in Madurai District of Tamil nadu (India). J Ethnobiol Ethnomed 2006; 2: 25.

https://doi.org/10.1186/1746-4269-2-25

Muhammad Shaiq A, Shahnaz ST, Isiaka AO, Muhammad KP, Oladosu AI. Naturally Occurring Antifungal Aromatic Esters and Amides. J Chem Soc Pakistan 2010; 32: 565-570.

Ibikunle GF. Pharmacological effects of leaves and fruits of Solanum erianthum (Solanaceae) for anti-trichomona activity. Int J Life Sci Pharma Res 2012; 2: L185-190.

Zich FA, Hyland, Whiffen T, Kerrigan RA. "Mallotus mollissimus". Australian Tropical Rainforest Plants Edition 8 (RFK8). Centre for Australian National Biodiversity Research (CANBR), Australian Government. https://apps.lucidcentral.org/rainforest/text/entities/mallotus_mollissimus.htm. Accessed from Internet: 7-Oct-2021.

Germplasm resources information network. Agricultural research service, United States Department of Agriculture. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=313893. Accessed from Internet: 7-Oct-2021.

Harborne JB. Phytochemical Methods-A Guide to Modern Techniques of Plant Analysis. 3rd Ed. Chapman and Hall, London 1998.

Watanabe Y, Irie K, Matsumoto K. Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Sit2) mitogen-activated protein kinase pathway. Mol Cell Biol 1995; 15: 5740-5749.

https://doi.org/10.1128/MCB.15.10.5740

Ho CC. Molecular Cell Biology, Biodiversity and Biotechnology. 1st ed. Percetakan CCS Sdn Bhd, Malaysia 2003.

Andrews PD, Stark MJR. Type 1 protein phosphatase is required for maintenance of cell wall integrity, morphogenesis and cell cycle progression in Saccharomyces cerevisiae. J Cell Sci 2000; 113: 507-520.

https://doi.org/10.1242/jcs.113.3.507

Gustin MC, Albertyn J, Alexander M, Davenport K. MAP Kinase pathways in Yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 1998; 62: 1264-1300.

https://doi.org/10.1128/MMBR.62.4.1264-1300.1998

Doi K, Gartner A, Ammerer G, Errede B, Shinkawa H, Sugimoto K, Matsumoto K. Msg5, a novel protein phosphatase promotes adaptation to pheromone in S. Cerevisiae. EMBO J 1994; 16: 61-70.

https://doi.org/10.1002/j.1460-2075.1994.tb06235.x

Sasoon I, Severin FF, Andrews PD, Taba M, Kaplan KB, Ashford AJ, Stark MJR, Sorger PK, Hyman AA. Regulation of Saccharomyces cerevisiae kinetochores by the type 1 phosphatase Glc7p. Genes Devel 1995; 13: 545-555.

https://doi.org/10.1101/gad.13.5.545

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2021 Nurul Ain Ismail, Azlinah Matawali, Ping-Chin Lee, Siew-Eng How, Latifah Saiful Yazan, Lucky Poh Wah Goh, Jualang Azlan Gansau