The Effect of Chronic Alcohol Intoxication on the Daily Rhythm of Some Micromorphometric Parameters of Rat Hepatocytes
PDF

Keywords

Hepatocyte
Desynchronosis
Chronomedicine
Micromorphometry
circadian rhythm
cosinor
alcohol liver disease

How to Cite

Kirillov, Y., Kozlova, M., Makartseva, L., Areshidze, D., Kucher, S., Chernov, I., & Shtemplevskaya, . E. (2021). The Effect of Chronic Alcohol Intoxication on the Daily Rhythm of Some Micromorphometric Parameters of Rat Hepatocytes. Journal of Pharmacy and Nutrition Sciences, 11, 1–12. https://doi.org/10.29169/1927-5951.2021.11.01

Abstract

The effect of chronic alcohol intoxication on the daily rhythm of micromorphometric parameters characterizing the morphological and functional state of the liver is studied on 80 male Wistar rats of 6 months age, divided into 2 equal groups. The first group served as control; rats of the second group (experiment) were kept under similar conditions but got as a drink a 15% ethanol solution ad libitum instead of water. After three weeks of the experiment, animals were euthanized consistently at four-time points during the day. The pathomorphological study of the liver was carried out, the daily dynamics of the nucleus and cell (by area and nuclear-cytoplasmic ratio (NCR)), ploidy of mononuclear hepatocytes, and the proportion of binuclear hepatocytes were measured. The reliability of circadian rhythm (CR) was determined by cosinor analysis. The study indicates complex changes in the organization of rhythmostasis in the experiment. The chrono-destructive effect of experimental alcohol intoxication on the CR of the cell and NCR, as well as the chronomodulating effect to the CR of the nucleus are established. The effect of ethanol on the CR of ploidy and the number of binuclear hepatocytes, as well as on the nature of their variation at the studied time points is established. An increase in the ploidy of hepatocytes and an in the number of binuclear cells is revealed, which indicates the beginning of the deployment of adaptive-compensatory reactions in the organ.

https://doi.org/10.29169/1927-5951.2021.11.01
PDF

References

Paukov VS, Voronina ТМ, Kirillov YA, Malysheva EM. Structural and Functional Fundamentals of Alcoholic Disease. Russian Journal of Gastroenterology, Hepatology, Coloproctology 2018; 28(5): 7–17. https://doi.org/10.22416/1382-4376-2018-28-5-7-17

Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 2015 Apr; 12(4): 231-42.https://doi.org/10.1038/nrgastro.2015.35

Lee DH, Jeong JY, Kim YS, Kim JS, Cho YW, Roh GS, Kim HJ, Kang SS, Cho GJ, Choi WS. Ethanol down regulates the expression of myelin proteolipid protein in the rat hippocampus. Anat Cell Biol 2010 Sep; 43(3): 194-200. http://dx.doi.org/10.5115/acb.2010.43.3.194

You M, Arteel GE. Effect of ethanol on lipid metabolism. J Hepatol 2019 Feb; 70(2): 237-248. https://doi.org/10.1016/j.jhep.2018.10.037

Lackner C, Tiniakos D. Fibrosis and alcohol-related liver disease. J Hepatol 2019 Feb; 70(2): 294-304. https://doi.org/10.1016/j.jhep.2018.12.003

Marot A, Henrion J, Knebel JF, Moreno C, Deltenre P. Alcoholic liver disease confers a worse prognosis than HCV infection and non-alcoholic fatty liver disease among patients with cirrhosis: An observational study. PLoS One 2017 Oct 27; 12(10): e0186715. https://doi.org/10.1371/journal.pone.0186715

Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol 2017 Nov 6; 27(21): R1147-R1151. http://doi.org/10.1016/j.cub.2017.09.019

Vitaterna MH, Takahashi JS, Turek FW. Overview of circadian rhythms. Alcohol Res Health 2001; 25(2): 85-93.

Reid KJ. Assessment of Circadian Rhythms. Neurol Clin 2019 Aug; 37(3): 505-526. http://doi.org/10.1016/j.ncl.2019.05.001

Çalıyurt O. Role of Chronobiology as a Transdisciplinary Field of Research: Its Applications in Treating Mood Disorders. Balkan Med J 2017 Dec 1; 34(6): 514-521. https://doi.org/10.4274/balkanmedj.2017.1280

Adan A, Archer SN, Hidalgo MP, Di Milia L, Natale V, Randler C. Circadian typology: a comprehensive review. Chronobiol Int 2012 Nov; 29(9): 1153-75. https://doi.org/10.3109/07420528.2012.71997

Bollinger T, Schibler U. Circadian rhythms - from genes to physiology and disease. Swiss Med Wkly 2014 Jul 24; 144: w13984. http://doi.org/10.4414/smw.2014.13984

Bhatwadekar AD, Rameswara V. Circadian rhythms in diabetic retinopathy: an overview of pathogenesis and investigational drugs. Expert Opin Investig Drugs 2020 Dec; 29(12): 1431-1442. https://doi.org/10.1080/13543784.2020.1842872

BoycePR.Human factors in lighting (3rd edition). CRC Press, Boca Raton, FL 2014. 703 p.

Foster RG, Roenneberg T. Human responses to the geophysical daily, annual and lunar cycles. Curr Biol 2008 Sep 9; 18(17): R784-R794. http://doi.org/10.1016/j.cub.2008.07.003

Persson PB, Persson AB. Light and darkness in circadian rhythms. Acta Physiol (Oxf) 2018 Mar; 222(3). http://doi.org/10.1111/apha.13036

Blume C, Garbazza C, Spitschan M. Effects of light on human circadian rhythms, sleep and mood. Somnologie (Berl) 2019 Sep; 23(3): 147-156. https://doi.org/10.1007/s11818-019-00215-x

Shen J, Tower J. Effects of light on aging and longevity. Ageing Res Rev 2019 Aug; 53: 100913. https://doi.org/10.1016/j.arr.2019.100913

Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, Nelson RJ. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A 2010 Oct 26; 107(43): 18664-9. http://doi.org/10.1073/pnas.1008734107

Jasser SA, Blask DE, Brainard GC. Light during darkness and cancer: relationships in circadian photoreception and tumor biology. Cancer Causes Control 2006 May; 17(4): 515-23. http://doi.org/10.1007/s10552-005-9013-6

Reiter RJ, Tan DX, Korkmaz A, Erren TC, Piekarski C, Tamura H, Manchester LC. Light at night, chronodisruption, melatonin suppression, and cancer risk: a review. Crit Rev Oncog 2007 Dec; 13(4): 303-28 http://doi.org/10.1615/critrevoncog.v13.i4.30

Parent MÉ, El-Zein M, Rousseau MC, Pintos J, Siemiatycki J. Night work and the risk of cancer among men. Am J Epidemiol 2012 Nov 1; 176(9): 751-9. http://doi.org/10.1093/aje/kws318

Wasielewski JA, Holloway FA. Alcohol's interactions with circadian rhythms. A focus on body temperature. Alcohol Res Health 2001; 25(2): 94-100.

Rosenwasser AM. Chronobiology of ethanol: animal models. Alcohol 2015 Jun; 49(4): 311-9. http://doi.org/10.1016/j.alcohol.2015.04.001

Huang W, Penaherrera EP, Desir DF, Gamarro DL, Cottrell J, Chu T, Chang SL. Bi-directional Acceleration of Alcohol Use and Opioid Use Disorder. J Drug Alcohol Res 2019 Oct 18; 2019: 236084.

Davis BT 4th, Voigt RM, Shaikh M, Forsyth CB, Keshavarzian A. Circadian Mechanisms in Alcohol Use Disorder and Tissue Injury. Alcohol Clin Exp Res 2018 Apr; 42(4): 668-677. http://doi.org/10.1111/acer.13612

Huang MC, Ho CW, Chen CH, Liu SC, Chen CC, Leu SJ. Reduced expression of circadian clock genes in male alcoholic patients. Alcohol Clin Exp Res 2010 Nov; 34(11): 1899-904. http://doi.org/10.1111/j.1530-0277.2010.01278.x

Oishi K, Konishi T, Hashimoto C, Yamamoto S, Takahashi Y, Shiina Y. Dietary fish oil differentially ameliorates high-fructose diet-induced hepatic steatosis and hyperlipidemia in mice depending on time of feeding. J Nutr Biochem 2018 Feb; 52: 45-53. http://doi.org/10.1016/j.jnutbio.2017.09.024

Prat G, Adan A. Influence of circadian typology on drug consumption, hazardous alcohol use, and hangover symptoms. Chronobiol Int 2011 Apr; 28(3): 248-57. http://doi.org/10.3109/07420528.2011.553018

Davis BT 4th, Voigt RM, Shaikh M, Forsyth CB, Keshavarzian A. CREB Protein Mediates Alcohol-Induced Circadian Disruption and Intestinal Permeability. Alcohol Clin Exp Res 2017 Dec; 41(12): 2007-2014. http://doi.org/10.1111/acer.13513

Filiano AN, Millender-Swain T, Johnson R Jr, Young ME, Gamble KL, Bailey SM. Chronic ethanol consumption dis-rupts the core molecular clock and diurnal rhythms of meta-bolic genes in the liver without affecting the suprachiasmatic nucleus. PLoS One 2013 Aug 12; 8(8): e71684. http://doi.org/10.1111/acer.13513

Summa KC, Voigt RM, Forsyth CB, Shaikh M, Cavanaugh K, Tang Y, Vitaterna MH, Song S, Turek FW, Keshavarzian A. Disruption of the Circadian Clock in Mice Increases Intestinal Permeability and Promotes Alcohol-Induced Hepatic Pathology and Inflammation. PLoS One 2013 Jun 18; 8(6): e67102.

Hätönen T, Forsblom S, Kieseppä T, Lönnqvist J, Partonen T. Circadian phenotype in patients with the co-morbid alcohol use and bipolar disorders. Alcohol Alcohol 2008 Sep-Oct; 43(5): 564-8. http://doi.org/10.1093/alcalc/agn057

Swanson G, Forsyth CB, Tang Y, Shaikh M, Zhang L, Turek FW, Keshavarzian A. Role of intestinal circadian genes in alcohol-induced gut leakiness. Alcohol Clin Exp Res 2011 Jul; 35(7): 1305-14. http://doi.org/10.1111/j.1530-0277.2011.01466.x

You M, Arteel GE. Effect of ethanol on lipid metabolism. J Hepatol 2019 Feb; 70(2): 237-248. http://doi.org/10.1016/j.jhep.2018.10.037

Reséndiz-Flores M, Escobar C. Circadian disruption favors alcohol consumption and differential ΔFosB accumulation in Corticolimbic structures. Addict Biol 2019 Nov; 24(6): 1179-1190. http://doi.org/10.1111/adb.12674

Martínez-Salvador J, Ruiz-Torner A, Blasco-Serra A, Martínez-Soriano F, Valverde-Navarro AA. Morphologic variations in the pineal gland of the albino rat after a chronic alcoholisation process. Tissue Cell 2018 Apr; 51: 24-31. http://doi.org/10.1016/j.tice.2018.01.004

Sarkar DK. Circadian genes, the stress axis, and alcoholism.Alcohol Res 2012; 34(3): 362-6.

Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Magnone MC, Lascorz J, Depner M, Holzberg D, Soyka M, Schreiber S, Matsuda F, Lathrop M, Schumann G, Albrecht U. The clock gene Per2 influences the glutamatergicsystem and modulates alcohol consumption. Nat Med 2005 Jan; 11(1): 35-42. http://doi.org10.1038/nm1163

Shi D, Chen J, Wang J, Yao J, Huang Y, Zhang G, Bao Z. Circadian Clock Genes in the Metabolism of Non-alcoholic Fatty Liver Disease. Front Physiol 2019 May 8; 10: 423. http://doi.org/10.3389/fphys.2019.00423

Seggio JA, Fixaris MC, Reed JD, Logan RW, Rosenwasser AM. Chronic ethanol intake alters circadian phase shifting and free-running period in mice. J Biol Rhythms 2009 Aug; 24(4): 304-12. http://doi.org/10.1177/0748730409338449

Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015 Mar 26; 161(1): 84-92. http://doi.org/10.1016/j.cell.2015.03.015

Swanson G, Forsyth CB, Tang Y, Shaikh M, Zhang L, Turek FW, Keshavarzian A. Role of intestinal circadian genes in alcohol-induced gut leakiness. Alcohol Clin Exp Res 2011 Jul; 35(7): 1305-14. http://doi.org/10.1111/j.1530-0277.2011.01466.x

Forsyth CB, Voigt RM, Shaikh M, Tang Y, Cederbaum AI, Turek FW, Keshavarzian A. Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability. Am J Physiol Gastrointest Liver Physiol 2013 Jul 15; 305(2): G185-95. http://doi.org/10.1152/ajpgi.00354.2012

Kovanen L, Saarikoski ST, Haukka J, Pirkola S, Aromaa A, Lönnqvist J, Partonen T. Circadian clock gene polymorphisms in alcohol use disorders and alcohol consumption. Alcohol Alcohol 2010 Jul-Aug; 45(4): 303-11. http://doi.org/10.1093/alcalc/agq035

Morris CJ, Yang JN, Scheer FAJL. The impact of the circadian timing system on cardiovascular and metabolic function. Prog Brain Res 2012; 199: 337-358. http://doi.org/10.1016/B978-0-444-59427-3.00019-8

Broeke J., Pérez J. M. M., Pascau J. Image processing with ImageJ. – Packt Publishing Ltd, 2015.

Kulbacki M, Segen J, Bak A. Analysis, Recognition, and Classification of Biological Membrane Images. Adv Anat Embryol Cell Biol 2017; 227: 119-140. http://doi.org/10.1007/978-3-319-56895-9_8

Pagano M., Gauvreau K. Principles of biostatistics. – CRC Press 2018; 584 p. http://doi.org/10.2307/2684733

Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999 Sep; 94(9): 2467-74. http://doi.org/10.1111/j.1572-0241.1999.01377.x

Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev gastroenterol Hepatol 2019 Jun; 16(6): 377-386. http://doi.org/10.1038/s41575-019-0144-8

Avtandilov GG, Saniev KB. Ploidometriia v povyshenii kachestva patogistologicheskoĭ diagnostiki

[Ploidometry in improving the quality of pathohistologic diagnosis] . Arkh Patol 2002 May-Jun; 64(3): 31-3.

Avtandilov GG, Kholodova ZhL, Lysenko ON, Strizhova NV. Morfometricheskaia (otsenka ploidnosti) kharakteristika stepeni differentsirovki adenokartsinom tela matki

[Morphometric characteristics (assessment of ploidy) of the degree of differentiation of uterine body adenocarcinoma] . Arkh Patol 2002 Nov-Dec; 64(6): 27-30.

Cornelissen G. Cosinor-based rhythmometry. Theor Biol Med Model 2014 Apr 11; 11: 16. http://doi.org/10.1186/1742-4682-11-16

Moškon M. CosinorPy: a python package for cosinor-based rhythmometry. BMC Bioinformatics 2020 Oct 29; 21(1): 485. http://doi.org10.1186/s12859-020-03830-w

Gupta S. Hepatic polyploidy and liver growth control. Semin Cancer Biol 2000 Jun; 10(3): 161-71. http://doi.org/10.1006/scbi.2000.0317

Donne R, Saroul-Aïnama M, Cordier P, Celton-Morizur S, Desdouets C. Polyploidy in liver development, homeostasis and disease. Nat Rev Gastroenterol Hepatol 2020 Jul; 17(7): 391-405.http://doi.org/10.1038/s41575-020-0284-x

Wang MJ, Chen F, Lau JTY, Hu YP. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis 2017 May 18; 8(5): e2805. http://doi.org/10.1038/cddis.2017.167

Wilkinson P. D., Duncan A. W. Differential Roles for Diploid and Polyploid Hepatocytes in Acute and Chronic Liver Injury //Seminars in Liver Disease. – Thieme Medical Publishers, Inc., 2020.

Wilkinson P. Polyploidy in Liver Regeneration and Adaptation to Chronic Liver Injury : дис. – University of Pittsburgh, 2019.

Jack EM, Bentley P, Bieri F, Muakkassah-Kelly SF, Stäubli W, Suter J, Waechter F, Cruz-Orive LM. Increase in hepatocyte and nuclear volume and decrease in the population of binucleated cells in preneoplastic foci of rat liver: a stereological study using the nucleator method. Hepatology 1990 Feb; 11(2): 286-97. http://doi.org/10.1002/hep.1840110220

Lazzeri E, Angelotti ML, Conte C, Anders HJ, Romagnani P. Surviving Acute Organ Failure: Cell Polyploidization and Progenitor Proliferation. Trends Mol Med 2019 May; 25(5): 366-381. http://doi.org/10.1016/j.molmed.2019.02.006

Zhang S, Lin YH, Tarlow B, Zhu H. The origins and functions of hepatic polyploidy. Cell Cycle 2019 Jun; 18(12): 1302-1315. http://doi.org/10.1080/15384101.2019.1618123

Øvrebø JI, Edgar BA. Polyploidy in tissue homeostasis and regeneration. Development 2018 Jul 18; 145(14): dev156034.http://doi.org/10.1242/dev.156034

Wilkinson PD, Delgado ER, Alencastro F, Leek MP, Roy N, Weirich MP, Stahl EC, Otero PA, Chen MI, Brown WK, Duncan AW. The Polyploid State Restricts Hepatocyte Proliferation and Liver Regeneration in Mice. Hepatology 2019 Mar; 69(3): 1242-1258. http://doi.org/10.1002/hep.30286

van Grunsven LA. 3D in vitro models of liver fibrosis. Adv Drug Deliv Rev 2017 Nov 1; 121: 133-146. http://doi.org/10.1016/j.addr.2017.07.004

Jahn D, Kircher S, Hermanns HM, Geier A. Animal models of NAFLD from a hepatologist's point of view. Biochim Biophys Acta Mol Basis Dis 2019 May 1; 1865(5): 943-953. http://doi.org/10.1016/j.bbadis.2018.06.023

Adhyapok P, Fu X, Sluka JP, Clendenon SG, Sluka VD, Wang Z, Dunn K, Klaunig JE, Glazier JA. A computational model of liver tissue damage and repair. PLoS One 2020 Dec 21; 15(12): e0243451. http://doi.org/10.1371/journal.pone.0243451

Sahay P, Jain K, Sinha P, Das B, Mishra A, Kesarwani A, Sahu P, Mohan KV, Kumar MJM, Nagarajan P, Upadhyay P. Generation of a Rat Model of Acute Liver Failure by Combining 70% Partial Hepatectomy and Acetaminophen. J Vis Exp 2019 Nov 27; (153). http://doi.org/10.3791/60146

Dhurandhar D, Bharihoke V, Kalra S. A histological assessment of effects of sucralose on liver of albino rats. Morphologie 2018 Sep; 102(338): 197-204. http://doi.org/10.1016/j.morpho.2018.07.003

Matsumoto T, Wakefield L, Tarlow BD, Grompe M. InVivo Lineage Tracing of Polyploid Hepatocytes Reveals Extensive Proliferation during Liver Regeneration. Cell Stem Cell 2020Jan 2; 26(1): 34-47.e3. http://doi.org/10.1016/j.stem.2019.11.014

Kreutz C, MacNelly S, Follo M, Wäldin A, Binninger-Lacour P, Timmer J, Bartolomé-Rodríguez MM. Hepatocyte Ploidy Is a Diversity Factor for Liver Homeostasis. Front Physiol 2017 Oct 31; 8: 862. http://doi.org/10.3389/fphys.2017.00862

Pek NMQ, Liu KJ, Nichane M, Ang LT. Controversies Surrounding the Origin of Hepatocytes in Adult Livers and the inVitro Generation or Propagation of Hepatocytes. Cell Mol Gastroenterol Hepatol 2021; 11(1): 273-290. http://doi.org/10.1016/j.jcmgh.2020.09.016

Pinheiro D, Dias I, Ribeiro Silva K, Stumbo AC, Thole A, Cortez E, de Carvalho L, Weiskirchen R, Carvalho S. Mechanisms Underlying Cell Therapy in Liver Fibrosis: An Overview. Cells 2019 Oct 29; 8(11): 1339. http://doi.org/10.3390/cells8111339

Lin H, Huang YS, Fustin JM, Doi M, Chen H, Lai HH, Lin SH, Lee YL, King PC, Hou HS, Chen HW, Young PY, Chao HW. Hyperpolyploidization of hepatocyte initiates preneoplastic lesion formation in the liver. Nat Commun 2021 Jan 28; 12(1): 645. http://doi.org/10.1038/s41467-020-20572-8

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.