Biologically Structured Water (BSW) - A Review (Part 1): Structured Water (SW) Properties, BSW and Redox Biology, BSW and Bioenergetics
PDF

Keywords

Biologically structured water
hydrogen-bonded water
liquid crystalline structures
redox biology
supplemental cell energy
water respiration
transmutation

How to Cite

Ramsey, C. L. (2023). Biologically Structured Water (BSW) - A Review (Part 1): Structured Water (SW) Properties, BSW and Redox Biology, BSW and Bioenergetics. Journal of Basic & Applied Sciences, 19, 174–201. https://doi.org/10.29169/1927-5129.2023.19.15

Abstract

A review of biologically structured water (BSW) is needed to support a more convincing argument of the significance of organized water to the overall health of living organisms. Research phrases related to BSW water are energized, hexagonal, interfacial, or bound water because they refer to biological water with similar structural, functionality, and general water properties. Structured water is formed by shortening hydrogen bonds (H-bonds) in free water, forming various polymeric water structures. In living organisms, BSW water has liquid crystalline properties that have excellent redox qualities due to the energized state of the hexagonal ring structure. Each hexagonal ring has a vortex of delocalized electrons and protons that form pi orbitals above and below each ring, contributing to myriad redox reactions within cells. In addition, the energized hexagonal water rings can be readily split or ionized with minimal energy inputs, providing the oxygen-based ions needed to initiate water respiration. The water respiration pathway can convert the high-grade chemical energy stored in energized, biologically structured water into supplemental energy for cells. The water respiration theory based on interfacial structured water is revisited due to recent findings of superconductivity water properties. The contribution of energized BSW water to redox biology and water respiration can be associated with improved metabolic efficiency and enhanced physiological performance in all life forms. Finally, this article will review recent findings involving quantum biology and BSW water. When BSW water is confined in extremely small sites such as proton wires or water wires, the water properties take on strange quantum properties that stretch the accepted theories of chemistry and physics.

https://doi.org/10.29169/1927-5129.2023.19.15
PDF

References

Voeikov VL Biological oxidation: over a century of hardship for the concept of active oxygen. Cell Mol Biol 2005; 51: 663-75.

Nuday C. Water Codes The science of health, consciousness, and enlightenment 2014 Water Ink, CA.

Henniker JC The depth of the surface zone of a liquid. Reviews of Modern Physics 1949; 21(2): 322. https://doi.org/10.1103/RevModPhys.21.322

Lippincott ER, Stromberg RR, Grant WH, Cessac GS. Science 1969; 164: 1482. https://doi.org/10.1126/science.164.3887.1482

Schiff M. The Memory of Water Thorsens 1995.

Ling G. A Physical Theory of the Living State: the Association-Induction Hypothesis. 1962 Blaisdell Publishing Company, A Division of Random House, Inc., London.

Ling G. History of the Membrane (Pump) Theory of the Living Cell from Its Beginning in Mid-19th Century to Its Disproof 45 Years Ago — though Still Taught Worldwide Today as Established Truth. Physiological Chemistry and Physics and Medical NMR 2007; 39(1): 46-49.

Jhon MS. The water puzzle and the hexagonal key Amerika, Uplifting 2004.

Ho MW Illuminating water and life: Emilio Del Giudice Electromagnetic biology and medicine 2015; 34(2): 113-22. https://doi.org/10.3109/15368378.2015.1036079

Voeikov VLKey role of stable nonequilibrium state of aqueous systems in bioenergetics. Russian J Gen Chem 2011; 81(1): 209-19. https://doi.org/10.1134/S1070363211010385

Pollack GH The fourth phase of water Ebner and Sons Publishers: Seattle, WA, USA 2013.

Ho MW Living rainbow H2O World Scientific; 2012.

The legacy of Dr. Marcel Vogel 1996 https://ia802800.us.archive.org/5/items/lifestreamsampler/Lifestream%20Sampler.pdf

MarcelVolgellegacywebsite. https://marcelvogellegacy.com /about-marcel-vogel.

Crystal Visions website http://crystalvisions-film.com/marcel-vogel-crystals/

https://medium.com/broaderinsights/who-was-marcel-vogel-a9430f8c11e3

Tompkins P, Bird C The secret life of plants England: Penguin books; 1974.

Montagnier L, Del Giudice E, Aïssa J, Lavallee C, Motschwiller S, Capolupo A, Polcari A, Romano P, Tedeschi A, Vitiello G. Transduction of DNA information through water and electromagnetic waves. Electromagnetic Biology and Medicine 2015; 34(2): 106-12. https://doi.org/10.3109/15368378.2015.1036072

Oschman JL. Energy medicine-e-book: The scientific basis Elsevier Health Sciences 2015.

Rubik B, Muehsam D, Hammerschlag R, Jain S. Biofield science and healing: history, terminology, and concepts. Global Advances in Health and Medicine 2015; 4. https://doi.org/10.7453/gahmj.2015.038.suppl

Gallo P, Amann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J, Sellberg JA. Water: A tale of two liquids. Chemical Reviews 2016; 116(13): 7463-500. https://doi.org/10.1021/acs.chemrev.5b00750

Taschin A, Bartolini P, Eramo R, Righini R, Torre R. Evidence of two distinct local structures of water from ambient to supercooled conditions. Nature Communications 2013; 4(1): 2401. https://doi.org/10.1038/ncomms3401

Shi R, Tanaka H. Direct evidence in the scattering function for the coexistence of two types of local structures in liquid water. Journal of the American Chemical Society 2020; 142(6): 2868-75. https://doi.org/10.1021/jacs.9b11211

Camisasca G, Schlesinger D, Zhovtobriukh I, Pitsevich G, Pettersson LG. A proposal for the structure of high-and low-density fluctuations in liquid water. The Journal of Chemical Physics 2019; 151(3). https://doi.org/10.1063/1.5100875

Kontogeorgis GM, Holster A, Kottaki N, Tsochantaris E, Topsøe F, Poulsen J, Bache M, Liang X, Blom NS, Kronholm J. Water structure, properties and some applications-A review. Chemical Thermodynamics and Thermal Analysis 2022; 6: 100053. https://doi.org/10.1016/j.ctta.2022.100053

Nilsson A, Pettersson LG. The structural origin of anomalous properties of liquid water. Nature Communications 2015; 6(1): 8998. https://doi.org/10.1038/ncomms9998

Ryzhkina IS, Murtazina LI, Kiseleva YV, Konovalov AI. Properties of supramolecular nanoassociates formed in aqueous solutions of biologically active compounds in low or ultra-low concentrations InDoklady Physical Chemistry 2009 Oct (Vol. 428, pp. 196-200). SP MAIK Nauka/Interperiodica. https://doi.org/10.1134/S0012501609100029

Chaplin MF. Water's hydrogen bond strength Water and Life: The unique properties of H2O 2007; 69-86. https://doi.org/10.1201/EBK1439803561-c5

Tao Y, Zou W, Jia J, Li W, Cremer D. Different ways of hydrogen bonding in waterdoes warm water freeze faster than cold water? Journal of Chemical Theory and Computation 2017; 13(1): 55-76. https://doi.org/10.1021/acs.jctc.6b00735

Chen B, Ivanov I, Klein ML, Parrinello M. Hydrogen bonding in water. Physical Review Letters 2003; 91(21): 215503. https://doi.org/10.1103/PhysRevLett.91.215503

Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Luksic M, Dill KA. How water’s properties are encoded in its molecular structure and energies. Chemical Reviews 2017; 117(19): 12385-414. https://doi.org/10.1021/acs.chemrev.7b00259

Cai R, Yang H, He J, Zhu W. The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure 2009; 938(1-3): 15-9. https://doi.org/10.1016/j.molstruc.2009.08.037

Chang KT, Weng CI. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied Physics 2006; 100(4): 043917. https://doi.org/10.1063/1.2335971

Alkorta I, Rozas I, Elguero J. Non-conventional hydrogen bonds. Chemical Society Reviews 1998; 27(2): 163-70. https://doi.org/10.1039/a827163z

Szcześ A, Chibowski E, Hołysz L, Rafalski P. Effects of static magnetic field on water at kinetic condition. Chemical Engineering and Processing: Process Intensification 2011; 50(1): 124-7. https://doi.org/10.1016/j.cep.2010.12.005

Li XZ, Walker B, Michaelides A. Quantum nature of the hydrogen bond. Proceedings of the National Academy of Sciences 2011; 108(16): 6369-73. https://doi.org/10.1073/pnas.1016653108

Pugliano N, Saykally RJ. Measurement of quantum tunneling between chiral isomers of the cyclic water trimer. Science 1992; 257(5078): 1937-40. https://doi.org/10.1126/science.1411509

Kolesnikov AI, Reiter GF, Choudhury N, Prisk TR, Mamontov E, Podlesnyak A, Ehlers G, Seel AG, Wesolowski DJ, Anovitz LM. Quantum tunneling of water in beryl: a new state of the water molecule. Physical Review Letters 2016; 116(16): 167802. https://doi.org/10.1103/PhysRevLett.116.167802

Richardson JO, Pérez C, Lobsiger S, Reid AA, Temelso B, Shields GC, Kisiel Z, Wales DJ, Pate BH, Althorpe SC. Concerted hydrogen-bond breaking by quantum tunneling in the water hexamer prism. Science 2016; 351(6279): 1310-3. https://doi.org/10.1126/science.aae0012

Martin Chaplin. https://water.lsbu.ac.uk/water/water_sitemap. html.

Messori C, Prinzera SV, di Bardone FB. Deep into the Water: Exploring the Hydro-Electromagnetic and Quantum-Electrodynamic Properties of Interfacial Water in Living Systems. Open Access Library Journal 2019a; 6(05): 1. https://doi.org/10.4236/oalib.1105435

Messori C, Prinzera SV, di Bardone FB. The super-coherent state of biological water. Open Access Library Journal 2019b; 6(02): 1. https://doi.org/10.4236/oalib.1105236

Jerman I. The origin of life from quantum vacuum, water and polar molecules. American Journal of Modern Physics 2016; 5(4-1): 34-43.

Scirè AA. mesoscopic model for the collective dynamics of water coherence domainsarXiv preprint arXiv: 2004.07545 2020.

Geesink HJ, Jerman I, Meijer DK. Water, the cradle of life via its coherent quantum frequencies. Water 2020; 11: 78-108.

Marchettini N, Del Giudice E, Voeikov V, Tiezzi E. Water: A medium where dissipative structures are produced by a coherent dynamics. Journal of Theoretical Biology 2010; 265(4): 511-6. https://doi.org/10.1016/j.jtbi.2010.05.021

Del Giudice E, Voeikov V, Tedeschi A, Vitiello G. The origin and the special role of coherent water in living systems. Fields of the Cell 2015; 95-111.

Del Giudice E, Tedeschi A, Vitiello G, Voeikov V. Coherent structures in liquid water close to hydrophilic surfaces. Journal of Physics: Conference Series 2013; 442(1): 012028) IOP Publishing. https://doi.org/10.1088/1742-6596/442/1/012028

Giudice ED, Spinetti PR, Tedeschi A. Water dynamics at the root of metamorphosis in living organisms. Water 2010; 2(3): 566-86. https://doi.org/10.3390/w2030566

Giudice ED, Tedeschi A. Water and autocatalysis in living matter. Electromagnetic Biology and Medicine 2009; 28(1): 46-52. https://doi.org/10.1080/15368370802708728

Bono I, Del Giudice E, Gamberale L, Henry M. Emergence of the coherent structure of liquid water. Water 2012; 4(3): 510-32. https://doi.org/10.3390/w4030510

Czerlinski G, Ryba R. Trevor Coherence domains in living systems. J Vortex Sci Technol 2015; 2: 110. https://doi.org/10.4172/2090-8369.1000110

Liboff AR, Poggi C, Pratesi P. Weak low-frequency electromagnetic oscillations in water. Electromagnetic Biology and Medicine 2017; 36(2): 154-7. https://doi.org/10.1080/15368378.2016.1227332

Davidson RM, Lauritzen A, Seneff S. Biological water dynamics and entropy: a biophysical origin of cancer and other diseases. Entropy 2013; 15(9): 3822-76. https://doi.org/10.3390/e15093822

Ball P. Water is an active matrix of life for cell and molecular biology. Proceedings of the National Academy of Sciences 2017; 114(51): 13327-35. https://doi.org/10.1073/pnas.1703781114

Fathi AA, Alsslam AE, Ahmed HS. Schumann resonances and their potential applications: a review Article. Инженерныетехнологии и системы 2017; 27(4): 476-89. https://doi.org/10.15507/0236-2910.027.201704.476-489

Miller I 2003 http://www.globaldialoguefoundation.org /files/THESEDONAEFFECT.pdf

English t 2021 https://interestingengineering.com/science/ what-is-the-schumann-resonance.

Micunovic I 2023 https://www.meer.com/en/72411- schumann-resonance

Burns S 2023 https://www.youtube.com/watch?v=9Zw_Q UT4XFI

Mohri K, Fukushima M. Milligauss magnetic field triggering reliable self-organization of water with long-range ordered proton transport through cyclotron resonance. IEEE Transactions on Magnetics 2003; 39(5): 3328-30. https://doi.org/10.1109/TMAG.2003.816766

D'Emilia E, Giuliani L, Lisi A, Ledda M, Grimaldi S, Montagnier L, Liboff AR. Lorentz force in water: Evidence that hydronium cyclotron resonance enhances polymorphism. Electromagnetic Biology and Medicine 2015; 34(4): 370-5. https://doi.org/10.3109/15368378.2014.937873

D’Emilia E, Ledda M, Foletti A, Lisi A, Giuliani L, Grimaldi S, Liboff AR. Weak-field H3O+ ion cyclotron resonance alters water refractive index. Electromagnetic Biology and Medicine 2017; 36(1): 55-62. https://doi.org/10.1080/15368378.2016.1181082

Liguori A, Brizhik L, Liguori S, Silli L, Bangrazi S, Petti F, Pinti M, Pistelli MI, Giuliani L. Effects of Ion Cyclotron Frequencies on Human Resistance and Reactance in 31 Healthy Subjects Radiation 2022; 2(4): 357-75. https://doi.org/10.3390/radiation2040027

Ho MW. Large supramolecular water clusters caught on camera-a review. Water 2014; 6: 1-2.

Gerrard N, Mistry K, Darling GR, Hodgson A. Water dissociation and hydroxyl formation on Ni (110). The Journal of Physical Chemistry C 2020; 124(43): 23815-22. https://doi.org/10.1021/acs.jpcc.0c08708

Merte LR, Bechstein R, Peng G, Rieboldt F, Farberow CA, Zeuthen H, Knudsen J, Lægsgaard E, Wendt S, Mavrikakis M, Besenbacher F. Water clustering on nanostructured iron oxide films. Nature Communications 2014; 5(1): 4193. https://doi.org/10.1038/ncomms5193

Shiotari A, Sugimoto Y. Ultrahigh-resolution imaging of water networks by atomic force micros copy. Nature Communications 2017; 8(1): 1-7. https://doi.org/10.1038/ncomms14313

Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li XZ, Francisco JS, Zeng XC, Xu LM. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature 2020; 577(7788): 60-3. https://doi.org/10.1038/s41586-019-1853-4

Madl P, Del Giudice E, Voeikov VL, Tedeschi A, Kolarž P, Gaisberger M, Hartl A. Evidence of coherent dynamics in water droplets of waterfalls. Water 2013; 5: 57-68.

Pollack GH The fourth phase of water Ebner and Sons Publishers: Seattle, WA, USA 2013.

Yablonskaya O, Voeikov V, Buravleva E, Trofimov A, Novikov K. Physicochemical effects of humid air treated with infrared radiation on aqueous solutions. Water 2021; 13(10): 1370. https://doi.org/10.3390/w13101370

Dombrovsky LA, Fedorets AA, Medvedev DN. The use of infrared irradiation to stabilize levitating clusters of water droplets. Infrared Physics & Technology 2016; 75: 124-32. https://doi.org/10.1016/j.infrared.2015.12.020

Dombrovsky LA, Fedorets AA, Levashov VY, Kryukov AP, Bormashenko E, Nosonovsky M. Stable cluster of identical water droplets formed under the infrared irradiation: Experimental study and theoretical modeling. International Journal of Heat and Mass Transfer 2020; 161: 120255. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120255

Rosenfeld D, Woodley WL. Deep convective clouds with sustained supercooled liquid water down to-37.5 C. Nature 2000; 405(6785): 440-2. https://doi.org/10.1038/35013030

Sholl DS, Steckel JA. Density functional theory: a practical introduction John Wiley & Sons; 2022.

Gould T, Kooi DP, Gori-Giorgi P, Pittalis S. Electronic excited states in extreme limits via ensemble density functionals. Physical Review Letters 2023; 130(10): 106401. https://doi.org/10.1103/PhysRevLett.130.106401

Zhang Z, Li D, Jiang W, Wang Z. The electron density delocalization of hydrogen bond systems. Advances in Physics: X 2018; 3(1): 1428915. https://doi.org/10.1080/23746149.2018.1428915

Pollack GH. Cell electrical properties: reconsidering the origin of the electrical potential. Cell Biol Int 2015; 39(3): 237-342. https://doi.org/10.1002/cbin.10382

Pollack GH, Figueroa X, Zhao Q. Molecules, water, and radiant energy: new clues for the origin of life. International Journal of Molecular Sciences 2009; 10(4): 1419-1429. https://doi.org/10.3390/ijms10041419

Pollack GH. Water, energy and life: fresh views from the water's edge. International Journal of Design & Nature and Ecodynamics: a Transdisciplinary Journal Relating to Nature, Science and the Humanities 2010; 5(1): 27. https://doi.org/10.2495/DNE-V5-N1-27-29

Hwang SG, Hong JK, Sharma A, Pollack GH, Bahng G. Exclusion zone and heterogeneous water structure at ambient temperature. PLoS One 2018; 13(4). https://doi.org/10.1371/journal.pone.0195057

Ho MW. Water is the means, medium, and message of life. Intern J Design & Nat and Ecodynamics 2014; 9(1): 1-2. https://doi.org/10.2495/DNE-V9-N1-1-12

Ho MW. 10 Life is Water Electric Bioelectromagnetic and Subtle Energy Medicine 2014; 93.

Barbosa-Cánovas GV, Fontana Jr AJ, Schmidt SJ, Labuza TP, editors. Water activity in foods: fundamentals and applications John Wiley & Sons; 2020. https://doi.org/10.1002/9781118765982

Joardder MU, Mourshed M, Masud MH. State of bound water: measurement and significance in food processing. Springer International Publishing; 2019. https://doi.org/10.1007/978-3-319-99888-6

Kuroki S, Tsenkova R, Moyankova D, Muncan J, Morita H, Atanassova S, Djilianov D. Water molecular structure underpins extreme desiccation tolerance of the resurrection plant Haberlea rhodopensis. Scientific Reports 2019; 9(1): 3049. https://doi.org/10.1038/s41598-019-39443-4

Muncan J, Kuroki S, Moyankova D, Morita H, Atanassova S, Djilianov D, Tsenkova R. Protocol for aquaphotomics monitoring of water molecular structure in leaves of resurrection plants during desiccation and recovery.

Ignatov I, Huether F, Neshev N, Kiselova-Kaneva Y, Popova TP, Bankova R, Valcheva N, Ignatov AI, Angelcheva M, Angushev I, Baiti S. Research of water molecules cluster structuring during Haberlea rhodopensis Friv. hydration. Plants 2022; 11(19): 2655. https://doi.org/10.3390/plants11192655

IL C, Haskin CL, Fullerton GD. Multiple Unfrozen Water Fractions in Biological Tissues: Freezing Point and Size.

Pal S, Chattopadhyay A. Hydration dynamics in biological membranes: Emerging applications of terahertz spectroscopy. The Journal of Physical Chemistry Letters 2021; 12(39): 9697-709. https://doi.org/10.1021/acs.jpclett.1c02576

Mitra RK, Palit DK. Probing biological water using terahertz absorption spectroscopy. Terahertz Technology 2021; IntechOpen.

Nakagawa H, Yamamoto N. Incoherent Neutron Scattering and Terahertz Time-Domain Spectroscopy on Protein and Hydration Water. Life 2023; 13(2): 318. https://doi.org/10.3390/life13020318

Kerch G. Role of changes in state of bound water and tissue stiffness in development of age-related diseases. Polymers 2020; 12(6): 1362. https://doi.org/10.3390/polym12061362

Nilsson A, Pettersson LG. The structural origin of anomalous properties of liquid water. Nature Communications 2015; 6(1): 8998. https://doi.org/10.1038/ncomms9998

Malkin TL, Murray BJ, Brukhno AV, Anwar J, Salzmann CG. Structure of ice crystallized from supercooled water. Proceedings of the National Academy of Sciences 2012; 109(4): 1041-5. https://doi.org/10.1073/pnas.1113059109

Zheng JM, Pollack GH. Long-range forces extending from polymer-gel surfaces. Physical Review E 2003; 68(3): 031408. https://doi.org/10.1103/PhysRevE.68.031408

Sharma A, Pollack GH. Healthy fats and exclusion-zone size. Food Chemistry 2020; 316: 126305. https://doi.org/10.1016/j.foodchem.2020.126305

Britannica. https://www.britannica.com/science/hexagonal-system.

Yang DS, Zewail AH. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography. Proceedings of the National Academy of Sciences 2009; 106(11): 4122-6. https://doi.org/10.1073/pnas.0812409106

Segarra-Martí J, Roca-Sanjuán D, Merchán M. Can the hexagonal ice-likemodel renderthe spectroscopic fingerprints of structured water; Feedback from quantum-chemical computations. Entropy 2014; 16(7): 4101-20. https://doi.org/10.3390/e16074101

Ho MW, Yu-Ming Z, Haffegee J, Watton A, Musumeci F, Privitera G, Scordino A, Triglia A. The liquid crystalline organism and biological water. Water and the Cell 2006; 219-34. https://doi.org/10.1007/1-4020-4927-7_10

Fukuyama H, Le Bihan D, editors. Water: the forgotten biological molecule. Pan Stanford Publishing 2010.

Bunkin NF, Kozlov VA, Ignatiev PS, Suyazov NV, Shkirin AV, Atakhodzhaev IA. Refraction coefficient of water and aqueous solutions in the optical frequency range in the vicinity of Nafion. Biophysics 2012; 57: 733-49. https://doi.org/10.1134/S0006350912060048

Kunzek H, Müller S, Vetter S, Godeck R. The significance of physico chemical properties of plant cell wall materials for the development of innovative food products. European Food Research and Technology 2002; 214: 361-76. https://doi.org/10.1007/s00217-002-0487-0

Sun WQ. Dielectric relaxation of water and water-plasticized biomolecules in relation to cellular water organization, cytoplasmic viscosity, and desiccation tolerance in recalcitrant seed tissues. Plant Physiology 2000; 124(3): 1203-16. https://doi.org/10.1104/pp.124.3.1203

Berret JF. Local viscoelasticity of living cells measured by rotational magnetic spectroscopy. Nature Communications 2016; 7(1): 10134. https://doi.org/10.1038/ncomms10134

Voeikov VL, Del Giudice E. On the relationship between exclusion zones and coherence domains in water. Abstract retrieved from http://www.watercon.org/Abstracts_2012/ Voeikov_DelGiudice_%20Abstract%20WC2012edit.pdf 2012.

Del Giudice E, Voeikov V, Tedeschi A, Vitiello G. The origin and the special role of coherent water in living systems. Fields of the Cell 2015; 95-111.

Bellissent-Funel MC, Hassanali A, Havenith M, Henchman R, Pohl P, Sterpone F, Van Der Spoel D, Xu Y, Garcia AE. Water determines the structure and dynamics of proteins. Chemical Reviews 2016; 116(13): 7673-97. https://doi.org/10.1021/acs.chemrev.5b00664

Fogarty AC Duboué-Dijon E, Sterpone F, Hynes JT, Laage D. Biomolecular hydration dynamics: a jump model perspective. Chemical Society Reviews 2013; 42(13): 5672-83. https://doi.org/10.1039/c3cs60091b

Mondal S, Bagchi B. From structure and dynamics to biomolecular functions: The ubiquitous role of solvent in biology. Current Opinion in Structural Biology 2022; 77: 102462. https://doi.org/10.1016/j.sbi.2022.102462

Helms V. Protein dynamics tightly connected to the dynamics of surrounding and internal water molecules. Chem Phys Chem 2007; 8(1): 23-33. https://doi.org/10.1002/cphc.200600298

Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HYThesirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483(7388): 218-21. https://doi.org/10.1038/nature10815

Gensler HL, Bernstein H. DNA damage as the primary cause of aging. The Quarterly Review of Biology 1981; 56(3): 279-303. https://doi.org/10.1086/412317

Wilson 3rd DM, Bohr VA, McKinnon PJ DNA damage, DNA repair, aging and age-related disease. Mechanisms of Aging and Development 2008; 129(7-8): 349-52. https://doi.org/10.1016/j.mad.2008.02.013

Khesbak H, Savchuk O, Tsushima S, Fahmy K. The role of water H-bond imbalances in B-DNA substate transitions and peptide recognition revealed by time-resolved FTIR spectroscopy. Journal of the American Chemical Society 2011; 133(15): 5834-42. https://doi.org/10.1021/ja108863v

Yokomizo T, Nakasako M, Yamazaki T, Shindo H, Higo J. Hydrogen-bond patterns in the hydration structure of a protein. Chemical Physics Letters 2005; 401(4-6): 332-6. https://doi.org/10.2174/1871524915666150203093656

Herrera A, del CA Esparza M, Md Ashraf G, A Zamyatnin A, Aliev G. Beyond mitochondria, what would be the energy source of the cell? Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents) 2015; 15(1): 32-41.

Physiopedia website https://www.physio-pedia.com/ Adenosine_triphosphate_(ATP).

Sinclair 2017 https://www.quora.com/How-many-molecules-of-ATP-does-the-human-body-make-and-use-per-day

Ivanov KP. Modern medical problems of energy exchange in humans. Annals of the Russian Academy of Medical Sciences 2013; 68(6): 56-9. https://doi.org/10.15690/vramn.v68i6.674

Kundacina N, Shi M, Pollack GH. Effect of local and general anesthetics on interfacial water. PLoS One 2016; 11(4): e0152127. https://doi.org/10.1371/journal.pone.0152127

Ueda I, Tseng HS, Kaminoh Y, Ma SM, Kamaya H, Lin SH. Anesthetics release unfreezable and bound water in partially hydrated phospholipid lamellar systems and elevate phase transition temperature. Molecular Pharmacology 1986; 29(6): 582-8 https://doi.org/10.1016/0166-6622(89)80141-6

Ueda I. Anesthesia: an interfacial phenomenon. Colloids and Surfaces. 1989; 38(1): 37-48. https://doi.org/10.1213/00000539-199404000-00018

Ueda I, Tatara T, Chiou JS, Krishna PR, Kamaya H. Structure-selective anesthetic action of steroids: anesthetic potency and effects on lipid and protein. Anesthesia & Analgesia 1994; 78(4): 718-25.

Riveros-Perez E, Riveros R. Water in the human body: An anesthesiologist's perspective on the connection between physicochemical properties of water and physiologic relevance. Annals of Medicine and Surgery 2018; 26: 1-8. https://doi.org/10.1016/j.amsu.2017.12.007

Hameroff SR. Anesthetic action and "quantum consciousness" a match made in olive oil. Anesthesiology 2018; 129(2): 228-31. https://doi.org/10.1097/ALN.0000000000002273

Meijer DK, Jerman I, Melkikh AV, Sbitnev VI. Biophysics of consciousness: A scale-invariant acoustic information code of a superfluid quantum space guides the mental attribute of the universe. Rhythmic Oscillations in Proteins to Human Cognition 2021; 213-361. https://doi.org/10.1007/978-981-15-7253-1_8

Sbitnev VI. Quantum consciousness in warm, wet and noisy brain. Modern Physics Letters B 2016; 30(28): 1650329. https://doi.org/10.1142/S0217984916503292

Meijer DK, Jerman I, Melkikh AV, Sbitnev VI. Consciousness in the Universe is Tuned by a Musical Master Code, Part 3: A Hydrodynamic Superfluid Quantum Space Guides a Conformal Mental Attribute of Reality. Quantum 2020; 11(1): 72-107.

Shen X. Increased dielectric constant in the water treated by extremely low frequency electromagnetic field and its possible biological implication. Journal of Physics: Conference Series 2011; 329(1): 012019). IOP Publishing. https://doi.org/10.1088/1742-6596/329/1/012019

Vallée P. Action of pulsed low frequency electromagnetic fields on physicochemical properties of water: Incidence on its biological activity. European Journal of Water Quality 2006; 37(2): 221-32. https://doi.org/10.1051/wqual/2006006

Rad I, Stahlberg R, Kung K, Pollack GH. Low frequency weak electric fields can induce structural changes in water. Plosone 2021; 16(12): e0260967. https://doi.org/10.1371/journal.pone.0260967

Rao ML, Sedlmayr SR, Roy R, Kanzius J. Polarized microwave and RF radiation effects on the structure and stability of liquid water. Curr Sci 2010; 98(11): 1500-4.

Yakunov AV, Biliy MM, Naumenko AP. Long-Term Structural Modification of Water under Microwave Irradiation: Low-Frequency Raman Spectroscopic Measurements. Advances in Optical Technologies 2017. https://doi.org/10.1155/2017/5260912

Seker SS, Simsek O. Brief Review of Biological Effects of Electromagnetic Pollution (RF and 5G Waves) on Humans, Animals, and Vegetation.

Kalantaryan V, Martirosyan R, Babayan Y, Petrosyan V. Violation of molecular structure of intracellular water as a possible cause of carcinogenesis and its suppression by microwave radiation (hypothesis). Computational and Structural Biotechnology Journal 2023. https://doi.org/10.1016/j.csbj.2023.06.013

Kalantaryan VP, Hakobyan SN, Vardevanyan PO. Effect of weak electromagnetic waves on thermal properties of biomacromolecule water solutions. Journal of Contemporary Physics (Armenian Academy of Sciences) 2018; 53: 175-8. https://doi.org/10.3103/S106833721802010X

Ramundo-Orlando A. Effects of millimeter waves radiation on cell membrane-a brief review. Journal of Infrared, Millimeter, and Terahertz Waves 2010; 31: 1400-11. https://doi.org/10.1007/s10762-010-9731-z

Debouzy JC, Minier L, Veccio D, Pierre V, Jaoui R, Crouzier D. Are pulsed millimetre waves for biological/therapeutic use suitable to avoid thermal effects and magnify specific electromagnetic effects?

Kalantaryan VP, Martirosyan R, Babayan Y, Khazaryan R. On the possibility of using non-ionizing electromagnetic radiation. (Millimeter waves) in Oncology Progress In Electromagnetics Research Letters 2020; 91: 49-57. https://doi.org/10.2528/PIERL20020301

Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nature Metabolism 2021; 3(10): 1290-301. https://doi.org/10.1038/s42255-021-00483-8

https://komonews.com/news/healthworks/zombie-cells-buildup-in-your-body-may-play-role-in-aging-05-14-2019

https://blog.daveasprey.com/senescence-longevity-supplements/#: ~: text=These%20death%2Dresistant%20cells%2C%20called,improve%20your%20overall%20cellular%20function.

https://www.longevity.technology/pathway-to-longevity-get-rid-of-zombie-cells/

Bonatto D, Feltes BC, de Faria Poloni J. Aging as a consequence of intracellular water volume and density. Medical Hypotheses 2011; 77(6): 982-4. https://doi.org/10.1016/j.mehy.2011.08.025

Minton AP. Water loss in aging erythrocytes provides a clue to a general mechanism of cellular senescence. Biophysical Journal 2020; 119(10): 2039-44. https://doi.org/10.1016/j.bpj.2020.10.004

Demchuk O. Features of the use of structured water. The Scientific Heritage 2020; (47-5): 11-4.

Ramsey CL. Application of a structured water generator for crop irrigation: Structured water, drought tolerance, and alteration of plant defense mechanisms to abiotic stressors. J Basic Appl Sci 2021; 17: 127-52 Abstract: A greenhouse study was conducted to enhance drought tolerance in velvet bean plants. https://doi.org/10.29169/1927-5129.2021.17.14

Ramsey C, Freebury PC, Newman DH, Schweigkofler W, Cseke LJ, Newman SE. Use of Foliar Chemical Treatments to Induce Disease Resistance in Rhododendrons Inoculated with Phytophthora ramorum.

Artemov VG, Uykur E, Kapralov PO, Kiselev A, Stevenson K, Ouerdane H, Dressel M. Anomalously high proton conduction of interfacial water. The Journal of Physical Chemistry Letters 2020; 11(9): 3623-8. https://doi.org/10.1021/acs.jpclett.0c00910

Ho MW, Yu-Ming Z, Haffegee J, Watton A, Musumeci F, Privitera G, Scordino A, Triglia A. The liquid crystalline organism and biological water. Water and the Cell 2006; 219-34. https://doi.org/10.1007/1-4020-4927-7_10

Sies H. Oxidative eustress: On constant alert for redox homeostasis. Redox Biology 2021; 101867. https://doi.org/10.1016/j.redox.2021.101867

Go YM, Jones DP. Redox theory of aging: implications for health and disease. Clinical Science 2017; 131(14): 1669-88. https://doi.org/10.1042/CS20160897

Flohe L. Looking back at the early times of redox biology. https://doi.org/10.20944/preprints202010.0511.v1

Manoj KM, Tamagawa H. A critical appraisal on cellular homeostasis, transduction of environmental stimuli and the elicitation of electrophysiological responses OSF Preprints 2020.

Ying W. NAD+ and NADH in cellular functions and cell death. Front Biosci 2006; 11(1): 3129-48. https://doi.org/10.2741/2038

Aiello G, Micciancio-Giammarinaro MS, Palma-Vittorelli MB, Palma MU. Behaviour of Interacting Protons: The Average-Mass Approach to its Study and its Possible Biological Relevance Cooperative Phenomena 1973; 395-403. https://doi.org/10.1007/978-3-642-86003-4_35

Ho MW, Yu-Ming Z, Haffegee J, Watton A, Musumeci F, Privitera G, Scordino A, Triglia A. The liquid crystalline organism and biological water. Water and the Cell 2006: 219-34. https://doi.org/10.1007/1-4020-4927-7_10

Rouleau N, Persinger M. Cerebral networks of interfacial water: analogues of the neural correlates of consciousness in a synthetic three-shell realistic head model. Journal of Signal and Information Processing 2014; 5(04): 143. https://doi.org/10.4236/jsip.2014.54017

Otto HH. Could Pure Water Helices in a Supporting Helical Tube Scaffold Become Superconducting at Ambient Conditions of Temperature and Pressure.

Raković D. Brainwaves, neural networks, and ionic structures: Biophysical model for altered states of consciousness. Consciousness: Scientific challenge of the 21st century 1995; 293-318.

Mikheenko P. Superconductivity in self-assembled microtubules. Research Gate. Structure and to Consciousness. Journal of Applied Mathematics and Physics 2023; 11: 377-86. https://doi.org/10.4236/jamp.2023.112021

Wilberforce T, Olabi AG. Proton exchange membrane fuel cell performance prediction using artificial neural network. International Journal of Hydrogen Energy 2021; 46(8): 6037-50. https://doi.org/10.1016/j.ijhydene.2020.07.263

Wikipedia https://en.wikipedia.org/wiki/Membrane_potential.

Kozumi T, Kitagawa Y. Water structure changes induced by ceramics can be detected by increased permeability through aquaporin. Biochemistry and Biophysics Reports 2016; 5: 353-8. https://doi.org/10.1016/j.bbrep.2016.01.002

Ali AF, Cosemi E, Kamel S, Mohammed S, Elhefnawy M, Farid L, Shaker S. Miracle of Zamzam water: the effect on human endometrial aquaporin. IWTC 2009; 13: 1515-20.

Chai B, Yoo H, Pollack GH.Effect of radiant energy on near-surface water. The Journal of Physical Chemistry B 2009; 113(42): 13953-8. https://doi.org/10.1021/jp908163w

Pokorný J, Pokorný J, Foletti A, Kobilková J, Vrba J, Vrba JrJ. Mitochondrial dysfunction and disturbed coherence: gate to cancer. Pharmaceuticals 2015; 8(4): 675-95. https://doi.org/10.3390/ph8040675

Pokorný J, Pokorný J, Borodavka F. Warburg effect—damping of electromagnetic oscillations. Electromagnetic Biology and Medicine 2017; 36(3): 270-8. https://doi.org/10.1080/15368378.2017.1326933

Yang M, Brackenbury WJ. Membrane potential and cancer progression. Frontiers in Physiology 2013; 4: 185. https://doi.org/10.3389/fphys.2013.00185

Pokorný J, Pokorný J, Kobilková J, Jandová A, Holaj R. Cancer development and damped electromagnetic activity. Applied Sciences 2020; 10(5): 1826. https://doi.org/10.3390/app10051826

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.