Biologically Structured Water-A Review (Part 2): Redox Biology, Plant Resilience, SW Drinking Water Types, BSW Water and Aging, BSW Water and Immunity
PDF

Keywords

Redox biology
Structured water properties
Physicochemical water properties
Rehydration
Age-related disease treatments
Immunity resilience.

How to Cite

Ramsey, C. L. (2023). Biologically Structured Water-A Review (Part 2): Redox Biology, Plant Resilience, SW Drinking Water Types, BSW Water and Aging, BSW Water and Immunity. Journal of Basic & Applied Sciences, 19, 207–229. https://doi.org/10.29169/1927-5129.2023.19.17

Abstract

A review was conducted between redox biology and BSW water to link their interactions with cell bioenergetics. The exchange of electrons and protons from energized BSW water significantly contributes to recycling energy biomolecules during aerobic respiration. Plant resilience to biotic and abiotic stressors is also significantly improved by maintaining adequate levels of BSW water. The physicochemical properties of SW water are readily measured and are associated with improved human health. Natural healing water and SW water products have similar physicochemical properties. Medical literature shows a direct association between dehydration and age-related diseases. Drinking SW water enhances rehydration rates and increases intracellular water content. Research has also suggested that drinking SW water has a positive effect on certain neurological diseases and cancer types. Finally, drinking SW water improves the immunity system in humans.

https://doi.org/10.29169/1927-5129.2023.19.17
PDF

References

Cardarella J, Turner J, Lo SY. A Soft Matter State of Water and the Structures it Forms Onco Therapeutics 2012; 3(3-4). https://www.researchgate.net/publication/274815653_A_Soft_Matter_State_of_Water_and_the_Structures_it_Forms?enrichId=rgreq-a600d8378f3b7ab0e72b6236be7201a7-.

Kim Y, Bertagna F, D'souza EM, Heyes DJ, Johannissen LO, Nery ET, Pantelias A, Sanchez-Pedreño Jimenez A, Slocombe L, Spencer MG, Al-Khalili J. Quantum biology: An update and perspective. Quantum Reports 2021; 3(1): 80-126. https://doi.org/10.3390/quantum3010006

Moser CC, Dutton PL. Outline of theory of protein electron transfer. Protein electron transfer 2020; pp. 1-21. Garland Science. https://doi.org/10.1201/9781003076803-1

Pang XF. Properties of proton transfer in hydrogen-bonded systems and its experimental evidence and applications in biology. Progress in Biophysics and Molecular Biology 2013; 112(1-2): 1-32. https://doi.org/10.1016/j.pbiomolbio.2012.11.003

Cui Q, Karplus M. Is a "proton wire" concerted or stepwise A model study of proton transfer in carbonic an hydrase. The Journal of Physical Chemistry B 2003; 107(4): 1071-8. https://doi.org/10.1021/jp021931v

Salna B, Benabbas A, Sage JT, van Thor J, Champion PM. Wide-dynamic-range kinetic investigations of deep proton tunneling in proteins. Nature Chemistry 2016; 8(9): 874-80. https://doi.org/10.1038/nchem.2527

Odella E, Secor M, Reyes Cruz EA, Guerra WD, Urrutia MN, Liddell PA, Moore TA, Moore GF, Hammes-Schiffer S, Moore AL. Managing the redox potential of PCET in grotthuss-type proton wires. Journal of the American Chemical Society 2022; 144(34): 15672-9. https://doi.org/10.1021/jacs.2c05820

Odella E, Mora SJ, Wadsworth BL, Goings JJ, Gervaldo MA, Sereno LE, Groy TL, Gust D, Moore TA, Moore GF, Hammes-Schiffer S. Proton-coupled electron transfer across benzimidazole bridges in bioinspired proton wires. Chemical science 2020; 11(15): 3820-8. https://doi.org/10.1039/C9SC06010C

Goings JJ, Hammes-Schiffer S. Nonequilibrium dynamics of proton-coupled electron transfer in proton wires: concerted but asynchronous mechanisms ACS. Central Science 2020; 6(9): 1594-601. https://doi.org/10.1021/acscentsci.0c00756

Ying W. NAD+ and NADH in cellular functions and cell death. Front Biosci 2006; 11(1): 3129-48. https://doi.org/10.2741/2038

Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocrine reviews 2010; 31(2): 194-223. https://doi.org/10.1210/er.2009-0026

Chu XY, Xu YY, Tong XY, Wang G, Zhang HY. The legend of ATP: From the origin of life to precision medicine. Metabolites 2022; 12(5): 461. https://doi.org/10.3390/metabo12050461

Takihara Y, Sudo D, Arakawa J, Takahashi M, Sato A, Tanuma SI, Uchiumi F. Nicotinamide adenine dinucleotide (NAD+) and cell aging. New Research on Cell Aging and Death. Hauppauge, NY: Nova Science Publishers 2018; 1: 131-58. https://doi.org/10.1007/978-3-319-69892-2_1035-1

Srivastava S. Emerging therapeutic roles for NAD+ metabolism in mitochondrial and age-related disorders. Clinical and translational medicine 2016; 5: 1-1. https://doi.org/10.1186/s40169-016-0104-7

Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nature Reviews Molecular Cell Biology 2021; 22(2): 119-41. https://doi.org/10.1038/s41580-020-00313-x

Strømland Ø, Diab J, Ferrario E, Sverkeli LJ, Ziegler M. The balance between NAD+ biosynthesis and consumption in ageing. Mechanisms of Ageing and Development 2021; 199: 111569. https://doi.org/10.1016/j.mad.2021.111569

Griffiths HB, Williams C, King SJ, Allison SJ. Nicotinamide adenine dinucleotide (NAD+): Essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target. Biochemical Society Transactions 2020; 48(3): 733-44. https://doi.org/10.1042/BST20190033

Strømland Ø, Diab J, Ferrario E, Sverkeli LJ, Ziegler M. The balance between NAD+ biosynthesis and consumption in ageing. Mechanisms of Ageing and Development 2021; 199: 111-569. https://doi.org/10.1016/j.mad.2021.111569

Waddell J, Khatoon R, Kristian T. Cellular and Mitochondrial NAD Homeostasis in Health and Disease. Cells 2023; 12(9): 1329. https://doi.org/10.3390/cells12091329

Sohal RS, Toy PL, Farmer KJ. Age-related changes in the redox status of the housefly, Musca domestica. Archives of gerontology and geriatrics 1987; 6(2): 95-100. https://doi.org/10.1016/0167-4943(87)90001-X

Farmer KJ, Sohal RS. Relationship between superoxide anion radical generation and aging in the housefly, Musca domestica. Free Radical Biology and Medicine 1989; 7(1): 23-9. https://doi.org/10.1016/0891-5849(89)90096-8

Sakashita N, Watanabe HC, Ikeda T, Saito K, Ishikita H. Origins of water molecules in the photosystem II crystal structure. Biochemistry 2017; 56(24): 3049-57. https://doi.org/10.1021/acs.biochem.7b00220

Sakashita N, Ishikawa H, Saito K. Rigidly hydrogen-bonded water molecules facilitate proton transfer in photosystem II. Physical Chemistry. Chemical Physics 2020; 22(28): 15831-41. https://doi.org/10.1039/D0CP00295J

Li X, Li Z, Yang J. Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Physical review letters 2014; 112(1): 018301. https://doi.org/10.1103/PhysRevLett.112.018301

Linke K, Ho FM. Water in Photosystem II: structural, functional and mechanistic considerations. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2014; 1837(1): 14-32. https://doi.org/10.1016/j.bbabio.2013.08.003

Takaoka T, Sakashita N, Saito K, Ishikita H. p K a of a proton-conducting water chain in photosystem II. The Journal of Physical Chemistry Letters 2016; 7(10): 1925-32. https://doi.org/10.1021/acs.jpclett.6b00656

Bondar AN, Dau H. Extended protein/water H-bond networks in photosynthetic water oxidation. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2012; 1817(8): 1177-90. https://doi.org/10.1016/j.bbabio.2012.03.031

Hussein R, Ibrahim M, Bhowmick A, Simon PS, Chatterjee R, Lassalle L, Doyle M, Bogacz I, Kim IS, Cheah MH, Gul S. Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition. Nature communications 2021; 12(1): 6531. https://doi.org/10.1038/s41467-021-26781-z

Doyle MD, Bhowmick A, Wych DC, Lassalle L, Simon PS, Holton J, Sauter NK, Yachandra VK, Kern JF, Yano J, Wall ME. Water Networks in Photosystem II Using Crystalline Molecular Dynamics Simulations and Room-Temperature XFEL Serial Crystallography. Journal of the American Chemical Society 2023; 145(27): 14621-35. https://doi.org/10.1021/jacs.3c01412

Ho MW. Large supramolecular water clusters caught on camera-a review. Water 2014; 6: 1-2.

Ho MW. Illuminating water and life: Emilio Del Giudice Electromagnetic biology and medicine 2015; 34(2): 113-22. https://doi.org/10.3109/15368378.2015.1036079

Gauthier PP, Battle MO, Griffin KL, Bender ML. Measurement of gross photosynthesis, respiration in the light, and mesophyll conductance using H2 18O labeling. Plant Physiology 2018; 177(1): 62-74. https://doi.org/10.1104/pp.16.00741

Sarraf M, Kataria S, Taimourya H, Santos LO, Menegatti RD, Jain M, Ihtisham M, Liu S. Magnetic field (MF) applications in plants: An overview. Plants 2020; 9(9): 1139. https://doi.org/10.3390/plants9091139

Saletnik B, Saletnik A, Słysz E, Zaguła G, Bajcar M, Puchalska-Sarna A, Puchalski C. The static magnetic field regulates the structure, biochemical activity, and gene expression of plants. Molecules 2022; 27(18): 5823. https://doi.org/10.3390/molecules27185823

Alattar E, Radwan E, Elwasife K. Improvement in growth of plants under the effect of magnetized water. AIMS Biophysics 2022; 9(4): 346-87. https://doi.org/10.3934/biophy.2022029

Gora MK, Jakhar KC, Jat H, Kumar P. A review: structured water technology: its effect on productivity of agricultural crops. Int J Chem Stud 2018; 4: 3248-53.

Tu R, Jin W, Xi T, Yang Q, Han SF, Abomohra AE. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water research 2015; 86: 132-8. https://doi.org/10.1016/j.watres.2015.07.039

Yang G, Wang J, Mei Y, Luan Z. Effect of magnetic field on protein and oxygen-production of Chlorella vulgaris. Mathematical and Physical Fisheries Science 2011; 9(1): 116-26.

Water Acitivy slides. https://www.slideshare.net /AbelJacobThomas/water-activity-and-different-instruments-to-determine-aw

Differential Scanning Calorimetry. https://en.wikipedia.org /wiki/Differential_scanning_calorimetry

Fernández-Marín B, Kranner I, Sebastián MS, Artetxe U, Laza JM, Vilas JL, Pritchard HW, Nadajaran J, Míguez F, Becerril JM, García-Plazaola JI. Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichiaruralis. Journal of Experimental botany 2013; 64(10): 3033-43. https://doi.org/10.1093/jxb/ert145

Buitink J, Leprince O. Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 2004; 48(3): 215-28. https://doi.org/10.1016/j.cryobiol.2004.02.011

Kunzek H, Müller S, Vetter S, Godeck R. The significance of physicochemical properties of plant cell wall materials for the development of innovative food products. European Food Research and Technology 2002; 214: 361-76. https://doi.org/10.1007/s00217-002-0487-0

Hoekstra FA, Golovina EA, Buitink J. Mechanisms of plant desiccation tolerance. Trends in plant science 2001; 6(9): 431-8. https://doi.org/10.1016/S1360-1385(01)02052-0

CandottoCarniel F, Fernandez-Marín B, Arc E, Craighero T, Laza JM, Incerti G, Tretiach M, Kranner I. How dry is dry? Molecular mobility in relation to thallus water content in a lichen. Journal of Experimental Botany 2021; 72(5): 1576-88. https://doi.org/10.1093/jxb/eraa521

Agbicodo EM, Fatokun CA, Muranaka S, Visser RG, Linden Van Der CG. Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 2009; 167: 353-70. https://doi.org/10.1007/s10681-009-9893-8

Rascio A, Altamura G, Pecorella I, Goglia L, Sorrentino G. Physiological mechanisms preventing plant wilting under heat stress: a case study on a wheat (Triticum durum Desf.) bound water-mutant. Environmental and Experimental Botany 2023: 105502. https://doi.org/10.1016/j.envexpbot.2023.105502

Rascio A, Platani C, Di Fonzo N, Wittmer G. Bound water in durum wheat under drought stress. Plant Physiology 1992; 98(3): 908-12. https://doi.org/10.1104/pp.98.3.908

Rascio A. Bound water in plants and its relationships to the abiotic. Rec Res Dev Plant Physiol 1997; 1: 215-2.

Ergashovich KA, Toshtemirovna NU, Raximovna AK, Abdullaevna FF. The properties of cotton resistance and adaptability to drought stress. Journal of Pharmaceutical Negative Results 2022; 13(4): 958-61.

Singh V, Pallaghy CK, Singh D. Phosphorus nutrition and tolerance of cotton to water stress: II. Water relations, free and bound water and leaf expansion rate. Field crops research 2006 Apr 30; 96(2-3): 199-206. https://doi.org/10.1016/j.fcr.2005.06.011

Jecmenica M, Kravić N, Vasić M, Živanović T, Mandić V, Damnjanović J, Dragičević V. Genetic variability of free energy in a function of drought tolerance in common bean accessions. Genetika 2016; 48(3): 1003-15. https://doi.org/10.2298/GENSR1603003J

Zhang SZ, Yang BP, Feng CL, Chen RK, Luo JP, Cai WW, Liu FH. Expression of the Grifolafrondosa trehalose synthase gene and improvement of drought‐tolerance in sugarcane (Saccharum officinarum L.). Journal of Integrative Plant Biology 2006; 48(4): 453-9. https://doi.org/10.1111/j.1744-7909.2006.00246.x

Wang XM, Zhao L, Yan BG, Shi LT, Liu GC, He YX. Morphological and physiological responses of Heteropogoncontortus to drought stress in a dry-hot valley. Botanical Studies 2016; 57: 1-2. https://doi.org/10.1186/s40529-016-0131-0

Yukui J, Fengmin LU, Jingbo ZH, Junliang G, Zhiming X, Fang L. Drought Resistance of Twelve Desert Shrubs at Seedling Stage of Ulan Buh Desert Ecosystem. Journal of Landscape Research 2016; 8(6): 83.

Biswas S, Das R. Structured Water: An Innovative Irrigation Option in Agriculture. Agriculture and Food 2022; 4(01): 342-4.

Gora MK, Jakhar KC, Jat H, Kumar P. A review: structured water technology: its effect on productivity of agricultural crops. Int J Chem Stud 2018; 4: 3248-53.

Dubey PK. Structured water: an exciting new field in water science. International Journal of Agriculture Sciences, ISSN 2018: 0975-3710.

Ramsey CL. Application of a structured water generator for crop irrigation: Structured water, drought tolerance, and alteration of plant defense mechanisms to abiotic stressors. J Basic Appl Sci 2021; 17: 127-52. Abstract: A greenhouse study was conducted to enhance drought tolerance in velvet bean plants. https://doi.org/10.29169/1927-5129.2021.17.14

Manoj KM, Tamagawa H. A critical appraisal on cellular homeostasis, transduction of environmental stimuli, and the elicitation of electrophysiological responses. OSF Preprints 2020.

James CN, Copeland RC, Lytle DA. Relationships between oxidation-reduction potential, oxidant, and pH in drinking water. Proc 2004 AWWA WQTC, San Antonio, Texas 2004 Nov 14.

http://www.molecularhydrogeninstitute.com/importance-of-oxidation-reduction-potential-orp

https://www.eautarcie.org/en/03d3.html

https://www.icmag.com/filedata/fetch?id=12600157

https://www.yokogawa.com/us/library/resources/white-papers/basics-of-orp/#: ~: text=ORP%20is%20similar%20to%20pH,electron%20activity%20within%20the%20solution.http://chinese.mretwater.com.sg/downloads/mret-article-alzheimers-disease.pdf

Ling GN. A new theoretical foundation for the polarized-oriented multilayer theory of cell water and for inanimate systems demonstrating long-range dynamic structuring of water molecules. Physiological chemistry and physics and medical NMR 2003; 35(2): 91-130.

Pokorný J, Pokorný J, Borodavka F. Warburg effect—damping of electromagnetic oscillations. Electromagnetic Biology and Medicine 2017; 36(3): 270-8. https://doi.org/10.1080/15368378.2017.1326933

Yang M, Brackenbury WJ. Membrane potential and cancer progression. Frontiers in physiology 2013; 4: 185. https://doi.org/10.3389/fphys.2013.00185

Yang M, Brackenbury WJ. Harnessing the membrane potential to combat cancer progression. Bioelectricity 2022; 4(2): 75-80. https://doi.org/10.1089/bioe.2022.0001

Lindinger MI. Structured water: effects on animals. Journal of Animal Science 2021; 99(5): 063. https://doi.org/10.1093/jas/skab063

Johansson B, Sukhotskya S. Drinking functional coherent mineral water accompanies a strengthening of the very low frequency impact on heart rate variability, and mono and multifractal heart rhythm dynamics in healthy humans. Functional Foods in Health and Disease 2016 ; 6(6): 388-413. https://doi.org/10.31989/ffhd.v6i6.265

Matsiyevska O. Influence of the redox potential of different water quality on the human blood. Технологический аудит и резервы производства 2017; 1(3 (33)). https://doi.org/10.15587/2312-8372.2017.93633

Martin Chaplin. https://water.lsbu.ac.uk/water/ water_sitemap.html.

Chumlea et al. (1999). Total body water data for white adults 18 to 64 years of age: the Fels longitudinal study. https://doi.org/10.1046/j.1523-1755.1999.00532.x

Messori C, Prinzera SV, di Bardone FB. Deep into the water: Exploring interfacial water's hydro-electromagnetic and quantum-electrodynamic properties in living systems. Open Access Library Journal 2019; 6(05): 1. https://doi.org/10.4236/oalib.1105435

Serra-Prat et al. (2019). Intracellular water content in lean mass is associated with muscle strength, functional capacity, and frailty in community-dwelling elderly individuals—a cross-sectional study. https://doi.org/10.3390/nu11030661

Lichtenbelt et al. (1999). Increased extracellular water compartment, relative to intracellular compartment, after weight reduction. https://doi.org/10.1152/jappl.1999.87.1.294

Zhang et al. (2019). Association between intracellular and extracellular fluid content and the amount of water intake among Chinese college students. https://doi.org/10.1186/s12986-019-0397-9

Popkin et al. (2010). Water, hydration, and health. https://doi.org/10.1111/j.1753-4887.2010.00304.x

Shi L, Hu F, Min W. Optical mapping of biological water in single live cells by stimulated Raman excited fluorescence microscopy. Nature communications 2019; 10(1): 4764. https://doi.org/10.1038/s41467-019-12708-2

Guo Y, Zhang M, Xie Y, Chen H, Xiao Z. Effect of Thermal Treatment on the Heat of Vaporization of Bound Water by NMR and DSC Analysis. BioResources 2018; 13(3): 5534-42. https://doi.org/10.15376/biores.13.3.5534-5542

Custodis F, Reil JC, Laufs U, Böhm M. Heart rate: a global target for cardiovascular disease and therapy along the cardiovascular disease continuum. Journal of cardiology 2013; 62(3): 183-7 https://doi.org/10.1016/j.jjcc.2013.02.018

Tverdal A, Hjellvik V, Selmer R. Heart rate and mortality from cardiovascular causes: a 12-year follow-up study of 379 843 men and women aged 40–45 years. European heart journal 2008; 29(22): 2772-81. https://doi.org/10.1093/eurheartj/ehn435

Zhang GQ, Zhang W. Heart rate, lifespan, and mortality risk. Ageing research reviews 2009 Jan 1; 8(1): 52-60. https://doi.org/10.1016/j.arr.2008.10.001

Lorenzo I, Serra-Prat M, Yébenes JC. The role of water homeostasis in muscle function and frailty: a review. Nutrients 2019; 11(8): 1857. https://doi.org/10.3390/nu11081857

Kerch G. Role of changes in state of bound water and tissue stiffness in development of age-related diseases. Polymers 2020; 12(6): 1362. https://doi.org/10.3390/polym12061362

Kerch G. Distribution of tightly and loosely bound water in biological macromolecules and age-related diseases. International journal of biological macromolecules 2018; 118: 1310-8. https://doi.org/10.1016/j.ijbiomac.2018.06.187

Jéquier E, Constant F. Water as an essential nutrient: the physiological basis of hydration. European journal of clinical nutrition 2010; 64(2): 115-23. https://doi.org/10.1038/ejcn.2009.111

Bedogni G, Borghi A, Battistini N. Body water distribution and disease. Acta Diabetologia 2003; 40. https://doi.org/10.1007/s00592-003-0065-3

Lavizzo-Mourey RJ. Dehydration in the elderly: a short review. Journal of the National Medical Association 1987 Oct; 79(10): 1033.

Hooper L, Bunn D, Jimoh FO, Fairweather-Tait SJ. Water-loss dehydration and aging. Mechanisms of Ageing and Development 2014 Mar 1; 136: 50-8. Ignatov I, Mosin OV. Hydrogen Bonds among Molecules in Liquid and Solid State of Water. Modifications of Ice Crystals. Journal of Health, Medicine and Nursing 2014; 5: 56-79. https://doi.org/10.1016/j.mad.2013.11.009

Description of drinking water products. https://mytapscore.com/blogs/tips-for-taps/what-s-the-function-of-functional-water

Ostojic SM. Serum alkalinization and hydrogen-rich water in healthy men. InMayo Clinic Proceedings 2012; 87(5): 501-502. Elsevier. https://doi.org/10.1016/j.mayocp.2012.02.008

Ostojic SM, Stojanovic MD. Hydrogen-rich water affected blood alkalinity in physically active men. Research in Sports Medicine 2014; 22(1): 49-60. https://doi.org/10.1080/15438627.2013.852092

Drid P, Trivic T, Casals C, Trivic S, Stojanovic M, Ostojic SM. Is molecular hydrogen beneficial to enhance post-exercise recovery in female athletes?. Science & Sports 2016; 31(4): 207-13. https://doi.org/10.1016/j.scispo.2016.04.010

Hydrogen water (Kangen water) https://www.eautarcie.org/en/03d2.html

Fisher BD, Gauvin C, Neeser KJ, Smirnov IV. Bioimpedance analysis to determine the extracellular/intracellular water exchange of MRET-activated water compared to control water. Nutrition and metabolism 6: 7.

Smirnov link. http://mret-water.com/scientific-studies/#section6

Johansson B and Sukhotskya S. Drinking functional coherent mineral water accompanies a strengthening of the very low frequency impact on heart rate variability, and mono and multifractal heart rhythm dynamics in healthy humans. Functional Foods in Health and Disease 2016; 6(6): 388-413. https://doi.org/10.31989/ffhd.v6i6.265

Smirnov IV. Mechanism of Possible Biological Effect of Activated Water on Patients Suffering from Alzheimer's Disease. ResearchGate.net 2003; 12: 44-6. https://www.newg7.com/en/whats-neug7_en.html

Smirnov IV. MRET Water Effect in the TgCRND8 Transgenic Amyloid Mice. Journal of Clinical and Experimental Neuroscience 2013; 1: 6. https://doi.org/10.12966/jcen.11.02.2013

KorotkovKG, Churganov OA, Gavrilova EA, Belodedova MA, Korotkova AK. Influence of drinking structured water to human psychophysiology. J Appl Biotechnol Bioeng 2019; 6(4): 171. https://doi.org/10.15406/jabb.2019.06.00190

Martin WJ. The Alternative Cellular Energy (ACE) Pathway as the Foundation for a New Paradigm in Medicine. Int J Complement Alt Med 2017; 9(6): 00314. https://doi.org/10.15406/ijcam.2017.09.00314

Martin WJ. The many biological functions of the alternative cellular energy (ACE) pathway. Int J Complement Alt Med 2017; 7(5): 00237. https://doi.org/10.15406/ijcam.2017.07.00237

Martin WJ. Insufficiency of cellular energy (ICE): The basis for many illnesses potentially correctable using KELEA activated water. International Journal Complementary & Alternative Medicine 2016; 4(1): 00106. https://doi.org/10.15406/ijcam.2016.04.00106

Martin WJ. Sustainable Increase in Emotional Wellness Achievable by Enhancing the Alternative Cellular Energy (ACE) Pathway with KELEA Activated Water.

Narayanan CR, Korotkov K, Srinivasan TM. Bioenergy and its implication for yoga therapy. International Journal of Yoga 2018; 11(2): 157. https://doi.org/10.4103/ijoy.IJOY_54_17

Johansson B. Functional Water-In Promotion of Health Beneficial Effects and Prevention of Disease. Internal Medicine Review 2016; 3(3). https://doi.org/10.18103/imr.v3i2.321

Jhon MS. Role of Water as Our Life Expectancy due to the Agings and Various Cancers. Bulletin of the Korean Chemical Society 1989; 10(2): 206-8.

Szalkai I. The Effect of High Oxygen Level (Kaqun) Water and the Ability to Use It to Maintain Military Combat Tone. Academic and Applied Research in Military and Public Management Science 2017; 16(3): 35-48. https://doi.org/10.32565/aarms.2017.3.2

Saltmarche AE, Naeser MA, Ho KF, Hamblin MR, Lim L. Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report. Photomedicine and laser surgery 2017; 35(8): 432-41. https://doi.org/10.1089/pho.2016.4227

Chai B, Yoo H, Pollack GH. Effect of radiant energy on near-surface water The Journal of Physical Chemistry B 2009; 113(42): 13953-8. https://doi.org/10.1021/jp908163w

Chao LL. Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: a pilot trial. Photobiomodulation, photomedicine, and laser surgery 2019; 37(3): 133-41. https://doi.org/10.1089/photob.2018.4555

Hamblin MR. Photobiomodulation for Alzheimer’s disease: has the light dawned?. InPhotonics 2019; 6(3): 77. MDPI. https://doi.org/10.3390/photonics6030077

Chan AS, Lee TL, Yeung MK, Hamblin MR. Photo biomodulation improves the frontal cognitive function of older adults. International journal of geriatric psychiatry 2019; 34(2): 369-77. https://doi.org/10.1002/gps.5039

Wang ZY, Zhou ZC, Zhu KN, Wang X, Pan JG, Lorenzen LH, Zhou MC. Microclustered water and hydration. Asia Pacific Journal of Clinical Nutrition 2004; 13.

Liguori A, Brizhik L, Liguori S, Silli L, Bangrazi S, Petti F, Pinti M, Pistelli MI, Giuliani L. Effects of Ion Cyclotron Frequencies on Human Resistance and Reactance in 31 Healthy Subjects. Radiation 2022; 2(4): 357-75. https://doi.org/10.3390/radiation2040027

Chang KT, Weng CI. The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied physics 2006; 100(4). https://doi.org/10.1063/1.2335971

Cai R, Yang H, He J, Zhu W. The effects of magnetic fields on water molecular hydrogen bonds. Journal of molecular structure 2009; 938(1-3): 15-9. https://doi.org/10.1016/j.molstruc.2009.08.037

Gang N, St-Pierre LS, Persinger MA. Water dynamics following treatment by one hour 0.16 Tesla static magnetic fields depend on exposure volume. Water 2012; 3: 122-31.

Pang X, Deng B. Investigation of changes in properties of water under the action of a magnetic field. Science in China Series G: Physics, Mechanics and Astronomy 2008; 51(11): 1621-32. https://doi.org/10.1007/s11433-008-0182-7

Ibrahim IH. Biophysical properties of magnetized distilled water. Egypt. J. Sol 2006; 29(2): 1-7. https://doi.org/10.21608/ejs.2006.149287

Holysz L, Szczes A, Chibowski E. Effects of a static magnetic field on water and electrolyte solutions. Journal of Colloid and Interface Science 2007; 316(2): 996-1002. https://doi.org/10.1016/j.jcis.2007.08.026

Lindinger MI. Structured water: effects on animals. Journal of Animal Science 2021; 99(5): skab063. https://doi.org/10.1093/jas/skab063

Gilani A, Kermanshahi H, Gholizadeh M, Golian A. Agricultural water management through magnetization of irrigation and drinking water: A review. Journal of Aridland Agriculture 2017; 3: 23-7. https://doi.org/10.25081/jaa.2017.v3.3353

Ebrahim SA, Azab AE. Biological effects of magnetic water on human and animals. Biomed Sci 2017; 3(4): 78. https://doi.org/10.11648/j.bs.20170304.12

El-Ghany A. Magnetized water as an alternative strategy to improve the poultry production system. Iranian Journal of Veterinary Science and Technology 2022; 14(3): 1-0.

Gholizadeh M, Arabshahi H, Saeidi MR, Mahdavi B. The effect of magnetic water on growth and quality improvement of poultry. Middle-East Journal of Scientific Research 2008; 3(3): 140-4.

Al-Mufarrej S, Al-Batshan HA, Shalaby MI, Shafey TM. The effects of magnetically treated water on the performance and immune system of broiler chickens. International Journal of Poultry Science 2005; 4(2): 96-102. https://doi.org/10.3923/ijps.2005.96.102

Kim HS, Adiyanto O, Byun JY, Chung SW, Kwon SG, Park JM, Kim JS, Choi WS. The Effectiveness of Magnetic Water Treatment to Improve Milk Fat and Milk Production of Dairy Cows. International Information Institute (Tokyo). Information 2016; 19(10A): 4463.

Khudiar K, Ali AM. Effect of magnetic water on some physiological aspects of adult male rabbits. In Proceeding of the Eleventh Veterinary Scientific Conference 2012; 120: 126 https://doi.org/10.30539/iraqijvm.v36i0E.405

Yacout MH, Hassan AA, Khalel MS, Shwerab AM, Abdel-Gawad EI, Abdel-Kader YI. Effect of magnetic water on the performance of lactating goats. J. Dairy Vet. Anim. Res 2015; 2(5): 00048. https://doi.org/10.15406/jdvar.2015.02.00048

AST International. Hunza Water link. http://www.astinternational.com/hydrationwaterresearch.html

Abbas H, Khan MZ, Begum F, Raut N, Gurung S. Physicochemical properties of irrigation water in western Himalayas, Pakistan. Water Supply 2020; 20(8): 3368-79. https://doi.org/10.2166/ws.2020.221

Ali A, Hussain K. Drinking water Quality analysis of Hunza-Nagar Gilgit.

Khalid N, Ahmad A, Khalid S, Ahmed A, Irfan M. Mineral composition and health functionality of Zamzam water: A review. International journal of food properties 2014; 17(3): 661-77. https://doi.org/10.1080/10942912.2012.660721

Al Doghaither HA, Al-Ghafari AB, Rahimulddin SA, Al Zahrani SM, Omar AS, Omar UM. Evaluation of the potential anticancer activity of zamzam water in human colon cancer cell line. Cancer Oncol. Res 2016; 4(3): 33-41. https://doi.org/10.13189/cor.2016.040301

Boshra AY, Mariod AA, Massad FA, Abdalrhman EM, Abbas SM, Hassan AA, Mahamedan MM, Elatta NM, Masaad10 HK, Hamid12 AM, Fadlalmola13 HA. Composition, hydrology, and health benefits of Zamzam water. Revista Bionatura 2021; 6(4): 2326-30. https://doi.org/10.21931/RB/2021.06.04.30

Abuelhaija Y, Mustafa A, Al-Bataineh HA, Alzaqh M, Mustafa A, Bawa'neh F, Alomari M, Alkhader A. A systematic review of the neurological effects of Zamzam water. World Journal of Advanced Research and Reviews 2023; 18(3): 1348-53. https://doi.org/10.30574/wjarr.2023.18.3.1255

Ignatov I, Mosin O. Studying the Composition and Properties of Mountain and Melt Water of Bulgaria and Russia as Factors of Longevity. Journal of Medicine, Physiology and Biophysics 2016; 22: 20-34.

Ignatov I. Studying of the factors of longevity in Smolyan municipality, Rhodope mountains, Bulgaria as area of oxidant/antioxidant balance. Bulgarian Journal of Public Health 2018; 10(1): 34-50.

Ignatov I, Gencheva N, Marinov T, Yaneva I, Angelcheva M, Dinkov G, Angushev I. Electrochemically activated water catholyte for the activation of hydrogen ions and atp for sport’s shape and recovery. Journal of Advances in Medicine and Medical Research 2020: 112-9. https://doi.org/10.9734/jammr/2020/v32i430407

Ignatov I, Mosin O. Water: Solid and Liquid Phases. Nano Structures in the Water in Solid and Liquid Phases. structure 2015; 9.

Ignatov I, Mosin O. Physical-Chemical Properties of Mountain Water from Bulgaria after Exposure to a Fullerene Containing Mineral Shungite and Aluminosilicate Mineral Zeolite. European Reviews of Chemical Research 2015; 5(3): 166-79. https://doi.org/10.13187/ercr.2015.5.166

Ignatov I, Popova TP, Petrova T, Ignatov AI. Physicochemical Parameters and in vivo antimicrobial effects on water filtrated with nano-structured carbonaceous Shungite. Journal of Chemical Technology & Metallurgy 2022; 57(5).

Ignatov I, Mosin O. Mathematical models describing water clusters as interaction among water molecules. distributions of energies of hydrogen bonds. Journal of Medicine, Physiology and Biophysics 2014; 3: 48-70. https://doi.org/10.13187/ejnr.2014.3.141

Ignatov I, Mosin O. Structural Models of Water and Structuring of Nano-clusters Regarding the Energies of Hydrogen Bonds. Journal of Medicine, Physiology and Biophysics 2015; 19: 47-65.

Ignatov I, Mosin O. New Evidence of the Existence of Associative Elements of Water (Clusters). Journal of Medicine, Physiology and Biophysics 2016; 25: 64-82.

Ignatov I, Mosin OV. Hydrogen Bonds among Molecules in Liquid and Solid State of Water. Modifications of Ice Crystals. Journal of Health, Medicine and Nursing 2014; 5: 56-79.

Lorenzo I, Serra-Prat M, Yébenes JC. The role of water homeostasis in muscle function and frailty: a review. Nutrients 2019 Aug; 11(8): 1857. https://doi.org/10.3390/nu11081857

Kerch G. Role of changes in state of bound water and tissue stiffness in development of age-related diseases. Polymers 2020; 12(6): 1362. https://doi.org/10.3390/polym12061362

Kerch G. Distribution of tightly and loosely bound water in biological macromolecules and age-related diseases. International journal of biological macromolecules 2018 Oct 15; 118: 1310-8. https://doi.org/10.1016/j.ijbiomac.2018.06.187

Szigeti GP, Szasz O, Hegyi G. Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer. Journal of Neoplasm 2017; 1(2-8): 1-3.

Ignatov I, Toshkova R, Gluhchev G, Drossinakis C. Results of Blood Serum from Cancer Treated Hamsters with Infrared Thermal Field and Electromagnetic Fields. Journal of Health, Medicine and Nursing 2019; 58: 101-12.

Pollack GH The Fourth Phase of Water. Beyond Solid, Liquid, and Vapor. Ebner and Sons Publishers: Seattle, WA, USA 2013.

Toshkova R, Ignatov I, Zvetkova E, Gluhchev G. Beneficial Effects of Drossinakis Bio-influence (With Infrared Thermal and Electromagnetic Fields) on the Development of Experimental Graffi Myeloid Tumors in Hamsters. Hematological Studies. Journal of Medicine, Physiology and Biophysics 2019; 54: 13-7.

Hwang SG, Hong JK, Sharma A, Pollack GH, Bahng G. Exclusion zone and heterogeneous water structure at ambient temperature. PLoS One 2018; 13(4): e0195057. https://doi.org/10.1371/journal.pone.0195057

Hwang SG, Lee HS, Lee BC, Bahng G. Effect of antioxidant water on the bioactivities of cells. International journal of cell biology 2017; 2017. https://doi.org/10.1155/2017/1917239

Mojica KT, Massari JR, Rodriguez JR, Olalde J, Berdiel M, Gonzalez MJ. Structured Water and Cancer: Orthomolecular Hydration Therapy. Journal of Cancer Research Updates 2023; 12: 5-9. https://doi.org/10.30683/1929-2279.2023.12.2

Mayrovitz HN. Measuring Breast Cancer-Related Lymphedema. Exon Publications 2022: 63-82. https://doi.org/10.36255/exon-publications-breast-cancer-lymphedema

Ikaga R, Namekata I, Kotiadis VN, Ogawa H, Duchen MR, Tanaka H, Iida-Tanaka N. Knockdown of aquaporin-8 induces mitochondrial dysfunction in 3T3-L1 cells. Biochemistry and biophysics reports 2015; 4: 187-95. https://doi.org/10.1016/j.bbrep.2015.09.009

Kozumi T, Kitagawa Y. Water structure changes induced by ceramics can be detected by increased permeability through aquaporin. Biochemistry and biophysics reports 2016; 5: 353-8. https://doi.org/10.1016/j.bbrep.2016.01.002

Ali AF, Cosemi E, Kamel S, Mohammed S, Elhefnawy M, Farid L, Shaker S. Miracle of Zamzam water: the effect on human endometrial aquaporin. IWTC 2009; 13: 1515-20.

Mayrovitz HN. Measuring Breast Cancer-Related Lymphedema. Exon Publications 2022: 63-82. https://doi.org/10.36255/exon-publications-breast-cancer-lymphedema

Broman ME, Vincent JL, Ronco C, Hansson F, Bell M. The relationship between heart rate and body temperature in critically Ill patients. Critical Care Medicine 2021; 49(3): e327-31. https://doi.org/10.1097/CCM.0000000000004807

Heal C, Harvey A, Brown S, Rowland AG, Roland D. The association between temperature, heart rate, and respiratory rate in children aged under 16 years attending urgent and emergency care settings. European Journal of Emergency Medicine 2022 Dec; 29(6): 413. https://doi.org/10.1097/MEJ.0000000000000951

Ruetenik A, Barrientos A. Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2015; 1847(11): 1434-47. https://doi.org/10.1016/j.bbabio.2015.05.005

Wickens AP. Ageing and the free radical theory. Respiration physiology 2001 Nov 15; 128(3): 379-91. https://doi.org/10.1016/S0034-5687(01)00313-9

Speakman JR. Body size, energy metabolism and lifespan. Journal of Experimental Biology 2005; 208(9): 1717-30. https://doi.org/10.1242/jeb.01556

Speakman JR, Selman C, McLaren JS, Harper EJ. Living fast, dying when? The link between aging and energetics. The Journal of nutrition 2002; 132(6): 1583S-97S. https://doi.org/10.1093/jn/132.6.1583S

Stessman J, Jacobs JM, Stessman‐Lande I, Gilon D, Leibowitz D. Aging, resting pulse rate, and longevity. Journal of the American Geriatrics Society 2013; 61(1): 40-5. https://doi.org/10.1111/jgs.12060

Custodis F, Reil JC, Laufs U, Böhm M. Heart rate: a global target for cardiovascular disease and therapy along the cardiovascular disease continuum. Journal of cardiology 2013; 62(3): 183-7 https://doi.org/10.1016/j.jjcc.2013.02.018

Tverdal A, Hjellvik V, Selmer R. Heart rate and mortality from cardiovascular causes: a 12 year follow-up study of 379 843 men and women aged 40–45 years. European heart journal 2008; 29(22): 2772-81. https://doi.org/10.1093/eurheartj/ehn435

Jensen MT. Resting heart rate and relation to disease and longevity: past, present and future. Scandinavian journal of clinical and laboratory investigation 2019; 79(1-2): 108-16. https://doi.org/10.1080/00365513.2019.1566567

Jensen MT, Marott JL, Allin KH, Nordestgaard BG, Jensen GB. Resting heart rate is associated with cardiovascular and all-cause mortality after adjusting for inflammatory markers: the Copenhagen City Heart Study. European journal of preventive cardiology 2012; 19(1): 102-8. https://doi.org/10.1177/1741826710394274

Woodward M, Webster R, Murakami Y, Barzi F, Lam TH, Fang X, Suh I, Batty GD, Huxley R, Rodgers A. The association between resting heart rate, cardiovascular disease and mortality: evidence from 112,680 men and women in 12 cohorts. European journal of preventive cardiology 2014; 21(6): 719-26. https://doi.org/10.1177/2047487312452501

Quer G, Gouda P, Galarnyk M, Topol EJ, Steinhubl SR. Inter-and intraindividual variability in daily resting heart rate and its associations with age, sex, sleep, BMI, and time of year: Retrospective, longitudinal cohort study of 92,457 adults. Plos one 2020 Feb 5; 15(2): e0227709. https://doi.org/10.1371/journal.pone.0227709

Cheţan M. Body composition monitoring through bioelectrical impedance analysis. In2015 9th International Symposium on Advanced Topics in Electrical Engineering (ATEE) 2015 May 7 (pp. 265-268). IEEE. https://doi.org/10.1109/ATEE.2015.7133826

Hamilton-James K, Collet TH, Pichard C, Genton L, Dupertuis YM. Precision and accuracy of bioelectrical impedance analysis devices in supine versus standing position with or without retractable handle in Caucasian subjects. Clinical Nutrition ESPEN 2021; 45: 267-74. https://doi.org/10.1016/j.clnesp.2021.08.010

Seward C, Skolny M, Brunelle C, Asdourian M, Salama L, Taghian AG. A comprehensive review of bioimpedance spectroscopy as a diagnostic tool for the detection and measurement of breast cancer-related lymphedema. Journal of surgical oncology 2016; 114(5): 537-42. https://doi.org/10.1002/jso.24365

Yu Z, Liu N, Wang L, Chen J, Han L, Sun D. Assessment of skin properties in chronic lymphedema: measurement of skin stiffness, percentage water content, and transepidermal water loss. Lymphatic Research and Biology 2020; 18(3): 212-8. https://doi.org/10.1089/lrb.2018.0066

Mayrovitz HN, Weingrad DN, Brlit F, Lopez LB, Desfor R. Tissue dielectric constant (TDC) as an index of localized arm skin water: differences between measuring probes and genders. Lymphology 2015; 48(1): 15-23.

Lahtinen T, Seppälä J, Viren T, Johansson K. Experimental and analytical comparisons of tissue dielectric constant (TDC) and bioimpedance spectroscopy (BIS) in assessment of early arm lymphedema in breast cancer patients after axillary surgery and radiotherapy. Lymphatic research and biology 2015 Sep 1; 13(3): 176-85. https://doi.org/10.1089/lrb.2015.0019

Pollack GH Cell electrical properties: reconsidering the origin of the electrical potential Cell Biol Int 2015; 39(3): 237-342. ISSN 1065-6995 doi: 10.1002/cbin.10382. https://doi.org/10.1002/cbin.10382

Pollack, G. H., X. Figueroa, and Q. Zhao 2009. Molecules, water, and radiant energy: new clues for the origin of life International journal of molecular sciences 10(4): 1419-1429. https://doi.org/10.3390/ijms10041419

Pollack GH Water, energy and life: fresh views from the water's edge International journal of design & nature and ecodynamics: a transdisciplinary journal relating to nature, science and the humanities 2010; 5(1): 27. https://doi.org/10.2495/DNE-V5-N1-27-29

Hwang SG, Hong JK, Sharma A, Pollack GH, Bahng G. Exclusion zone and heterogeneous water structure at ambient temperature PLoS One 2018; 13(4). https://doi.org/10.1371/journal.pone.0195057

Kundacina N, Shi M, Pollack GH. Effect of local and general anesthetics on interfacial water PLoS One 2016; 11(4): e0152127. https://doi.org/10.1371/journal.pone.0152127

Sommer AP. Mitochondrial cytochrome c oxidase is not the primary acceptor for near infrared light—it is mitochondrial bound water: the principles of low-level light therapy. Annals of Translational Medicine 2019; 7(Suppl 1). https://doi.org/10.21037/atm.2019.01.43

Sommer AP, Schemmer P, Pavláth AE, Försterling HD, Mester ÁR, Trelles MA. Quantum biology in low level light therapy: death of a dogma. Annals of Translational Medicine 2020; 8(7). https://doi.org/10.21037/atm.2020.03.159

Ravera S, Colombo E, Pasquale C, Benedicenti S, Solimei L, Signore A, Amaroli A. Mitochondrial bioenergetic, photobiomodulation and trigeminal branches nerve damage, what’s the connection? A Review. International Journal of Molecular Sciences 2021; 22(9): 4347. https://doi.org/10.3390/ijms22094347

Passarella S, Casamassima E, Molinari S, Pastore D, Quagliariello E, Catalano IM, Cingolani A. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium‐neon laser. FEBS letters 1984; 175(1): 95-9. https://doi.org/10.1016/0014-5793(84)80577-3

Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochemical & Photobiological Sciences 2002; 1: 547-52. https://doi.org/10.1039/b110213n

Hu WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS. Helium–neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. Journal of Investigative Dermatology 2007; 127(8): 2048-57. https://doi.org/10.1038/sj.jid.5700826

Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ. Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochemistry and photobiology 1997; 66(6): 866-71. https://doi.org/10.1111/j.1751-1097.1997.tb03239.x

Yang L, Youngblood H, Wu C, Zhang Q. Mitochondria as a target for neuroprotection: role of methylene blue and photobiomodulation. Translational neurodegeneration 2020; 9: 1-22. https://doi.org/10.1186/s40035-020-00197-z

Konovalov AI, Ryzhkina IS, Murtazina LI, Kiseleva YV. Forming the nanosized molecular assemblies (nanoassociates) is a key to understand the properties of highly diluted aqueous solutions. Biophysics 2014; 59: 341-6. https://doi.org/10.1134/S0006350914030142

Sidorenko GN, Konovalov AI, Laptev BI, Ivanova TG, Gorlenko NP, Antoshkin LV, Ryzhkina IS. On the role of water structure in the mechanism of complex action of the magnetic field, natural healing factors and highly diluted solutions. Bull. New Med. Technol 2017: 71-81.

Chang KT, Weng CI The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied Physics 2006; 100(4): 043917 https://doi.org/10.1063/1.2335971

Cai R, Yang H, He J, Zhu W. The effects of magnetic fields on water molecular hydrogen bonds. Journal of molecular structure 2009; 938(1-3): 15-9. https://doi.org/10.1016/j.molstruc.2009.08.037

Pang X, Deng B. Investigation of changes in properties of water under the action of a magnetic field. Science in China Series G: Physics, Mechanics and Astronomy 2008; 51(11): 1621-32. https://doi.org/10.1007/s11433-008-0182-7

Jung DH, Yang JH, Jhon MS. The effect of an external electric field on the structure of liquid water using molecular dynamics simulations. Chemical physics 1999; 244(2-3): 331-7. https://doi.org/10.1016/S0301-0104(99)00119-6

Ghauri SA, Ansari MS. Increase of water viscosity under the influence of magnetic field. Journal of Applied Physics 2006; 100(6). https://doi.org/10.1063/1.2347702

Shalatonin V, Pollack GH. Magnetic fields induce exclusion zones in water. Plos one 2022; 17(5): e0268747. https://doi.org/10.1371/journal.pone.0268747

Mohamed HA, Hanafy MS. Static Magnetic Field With 2 mT Strength Changes the Structure of Water Molecules and Exhibits Remarkable Increases in the Yield of Phaseolus vulgaris. Plant Archives (09725210) 2021; 21(1). https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.238

Chen B, Ivanov I, Klein ML, Parrinello M. Hydrogen bonding in water. Physical Review Letters 2003; 91(21): 215503. https://doi.org/10.1103/PhysRevLett.91.215503

Szcześ A, Chibowski E, Hołysz L, Rafalski P. Effects of static magnetic field on water at kinetic condition Chemical Engineering and Processing: Process Intensification 2011 Jan 1; 50(1): 124-7. https://doi.org/10.1016/j.cep.2010.12.005

Lagnado A, Leslie J, Ruchaud‐Sparagano MH, Victorelli S, Hirsova P, Ogrodnik M, Collins AL, Vizioli MG, Habiballa L, Saretzki G, Evans SA. Neutrophils induce paracrine telomere dysfunction and senescence in ROS‐dependent manner. The EMBO journal 2021; 40(9): e106048. https://doi.org/10.15252/embj.2020106048

Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. American journal of respiratory and critical care medicine 2002; 166(suppl 1): S4-8. https://doi.org/10.1164/rccm.2206007

Voeikov VL. Reactive oxygen species—(ROS) pathogens or sources of vital energy? Part 1. ROS in normal and pathologic physiology of living systems. Journal of Alternative & Complementary Medicine 2006; 12(2): 111-8. https://doi.org/10.1089/acm.2006.12.111

Voeikov VL. Reactive oxygen species (ROS): pathogens or sources of vital energy? Part 2. Bioenergetic and bioinformational functions of ROS. Journal of Alternative & Complementary Medicine 2006; 12(3): 265-70. https://doi.org/10.1089/acm.2006.12.265

Voeikov VL. Biological oxidation: over a century of hardship for the concept of active oxygen. Cell Mol Biol 2005; 51: 663-75.

Checconi P, De Angelis M, Marcocci ME, Fraternale A, Magnani M, Palamara AT, Nencioni L. Redox-modulating agents in the treatment of viral infections. International Journal of Molecular Sciences 2020; 21(11): 4084. https://doi.org/10.3390/ijms21114084

Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses 2018; 10(8): 392. https://doi.org/10.3390/v10080392

Fraternale A, Zara C, De Angelis M, Nencioni L, Palamara AT, Retini M, Di Mambro T, Magnani M, Crinelli R. Intracellular redox-modulated pathways as targets for effective approaches in the treatment of viral infection. International Journal of Molecular Sciences 2021; 22(7): 3603. https://doi.org/10.3390/ijms22073603

Shalatonin V. Water-SARS-CoV-2 interaction-based mechanism inhibiting virus attachment to host cells. https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/60c753384c89192fc4ad429a/original/water-sars-co-v-2-interaction-based-mechanism-inhibiting-virus-attachment-to-host-cells.pdf.

Messori C. A biophysical approach to SARS-CoV-2 pathogenicity. Open Access Library Journal 2021; 8(12): 1-35. https://doi.org/10.4236/oalib.1108183

Chen CS, Chung WJ, Hsu IC, Wu CM, Chin WC. Force field measurements within the exclusion zone of water. Journal of biological physics 2012; 38: 113-20. https://doi.org/10.1007/s10867-011-9237-5

Cheng Y, Moraru CI. Long-range interactions keep bacterial cells from liquid-solid interfaces: Evidence of a bacteria exclusion zone near Nafion surfaces and possible implications for bacterial attachment. Colloids and Surfaces B: Biointerfaces 2018; 162: 16-24. https://doi.org/10.1016/j.colsurfb.2017.11.016

Kowacz M, Pollack GH. Propolis-induced exclusion of colloids: Possible new mechanism of biological action. Colloid and interface science communications 2020; 38: 100307. https://doi.org/10.1016/j.colcom.2020.100307

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.